Nuprl Lemma : intermediate-value-theorem

I:Interval. ∀f:I ⟶ℝ.
  (f[x] continuous for x ∈ I
   (∀a,b:{x:ℝx ∈ I} .
        ((f(a) < f(b))
         (∀y:{y:ℝy ∈ [f(a), f(b)]} . ∀e:{e:ℝr0 < e} .  ∃x:{x:ℝx ∈ [rmin(a;b), rmax(a;b)]} (|f(x) y| < e)))))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I r-ap: f(x) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I interval: Interval rless: x < y rabs: |x| rmin: rmin(x;y) rmax: rmax(x;y) rsub: y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T rneq: x ≠ y or: P ∨ Q so_apply: x[s] r-ap: f(x) uall: [x:A]. B[x] rfun: I ⟶ℝ prop: uimplies: supposing a sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] label: ...$L... t iff: ⇐⇒ Q and: P ∧ Q guard: {T} rev_implies:  Q cand: c∧ B subtype_rel: A ⊆B subinterval: I ⊆  rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rgt: x > y not: ¬A exists: x:A. B[x] continuous: f[x] continuous for x ∈ I icompact: icompact(I) i-nonvoid: i-nonvoid(I) sq_exists: x:A [B[x]] false: False l_all: (∀x∈L.P[x]) int_seg: {i..j-} nat: lelt: i ≤ j < k rless: x < y real: nat_plus: + ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B full-partition: full-partition(I;p) select: L[n] cons: [a b] i-member: r ∈ I rccint: [l, u] partition: partition(I) less_than: a < b rbetween: x≤y≤z uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 inf: inf(A) b lower-bound: lower-bound(A;b) rrange: f[x](x∈I) rset-member: x ∈ A true: True rdiv: (x/y) i-finite: i-finite(I) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: bfalse: ff sq_type: SQType(T) bnot: ¬bb nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] absval: |i|

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  (\mforall{}a,b:\{x:\mBbbR{}|  x  \mmember{}  I\}  .
                ((f(a)  <  f(b))
                {}\mRightarrow{}  (\mforall{}y:\{y:\mBbbR{}|  y  \mmember{}  [f(a),  f(b)]\}  .  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                            \mexists{}x:\{x:\mBbbR{}|  x  \mmember{}  [rmin(a;b),  rmax(a;b)]\}  .  (|f(x)  -  y|  <  e)))))



Date html generated: 2020_05_20-PM-00_27_48
Last ObjectModification: 2020_01_06-PM-01_59_16

Theory : reals


Home Index