Step
*
1
1
1
5
of Lemma
interval-fun-maps-compact
1. y : Top
2. x1 : ℝ
3. n : ℕ+
4. a : ℝ
5. b : ℝ
6. a ≤ b
7. g : [a, b] ⟶ℝ
8. ∀x@0:{x:ℝ| x ∈ [a, b]} . (g[x@0] ∈ <inr y , inl inl x1>)
9. ∀x,y:{x:ℝ| x ∈ [a, b]} . g[x] = g[y] supposing x = y
10. real-fun(g;a;b)
11. ∀c:ℝ. ((∀x:{x:ℝ| x ∈ [a, b]} . (c < (g x)))
⇒ (∃c':{c':ℝ| c < c'} . ∀x:{x:ℝ| x ∈ [a, b]} . (c' ≤ (g x))))
12. ∀c:ℝ. ((∀x:{x:ℝ| x ∈ [a, b]} . ((g x) < c))
⇒ (∃c':{c':ℝ| c' < c} . ∀x:{x:ℝ| x ∈ [a, b]} . ((g x) ≤ c')))
13. bnd : ℝ
14. r0 ≤ bnd
15. ∀x:ℝ. ((x ∈ [a, b])
⇒ (|g x| ≤ bnd))
⊢ ∃c,d:ℝ. ([c, d] ⊆ <inr y , inl inl x1> ∧ (∀x:{x:ℝ| x ∈ [a, b]} . (g[x] ∈ [c, d])))
BY
{ ((D 0 With ⌜-(bnd)⌝ THENA Auto) THEN D 0 With ⌜x1⌝ THEN Auto) }
1
1. y : Top
2. x1 : ℝ
3. n : ℕ+
4. a : ℝ
5. b : ℝ
6. a ≤ b
7. g : [a, b] ⟶ℝ
8. ∀x@0:{x:ℝ| x ∈ [a, b]} . (g[x@0] ∈ <inr y , inl inl x1>)
9. ∀x,y:{x:ℝ| x ∈ [a, b]} . g[x] = g[y] supposing x = y
10. real-fun(g;a;b)
11. ∀c:ℝ. ((∀x:{x:ℝ| x ∈ [a, b]} . (c < (g x)))
⇒ (∃c':{c':ℝ| c < c'} . ∀x:{x:ℝ| x ∈ [a, b]} . (c' ≤ (g x))))
12. ∀c:ℝ. ((∀x:{x:ℝ| x ∈ [a, b]} . ((g x) < c))
⇒ (∃c':{c':ℝ| c' < c} . ∀x:{x:ℝ| x ∈ [a, b]} . ((g x) ≤ c')))
13. bnd : ℝ
14. r0 ≤ bnd
15. ∀x:ℝ. ((x ∈ [a, b])
⇒ (|g x| ≤ bnd))
⊢ [-(bnd), x1] ⊆ <inr y , inl inl x1>
2
1. y : Top
2. x1 : ℝ
3. n : ℕ+
4. a : ℝ
5. b : ℝ
6. a ≤ b
7. g : [a, b] ⟶ℝ
8. ∀x@0:{x:ℝ| x ∈ [a, b]} . (g[x@0] ∈ <inr y , inl inl x1>)
9. ∀x,y:{x:ℝ| x ∈ [a, b]} . g[x] = g[y] supposing x = y
10. real-fun(g;a;b)
11. ∀c:ℝ. ((∀x:{x:ℝ| x ∈ [a, b]} . (c < (g x)))
⇒ (∃c':{c':ℝ| c < c'} . ∀x:{x:ℝ| x ∈ [a, b]} . (c' ≤ (g x))))
12. ∀c:ℝ. ((∀x:{x:ℝ| x ∈ [a, b]} . ((g x) < c))
⇒ (∃c':{c':ℝ| c' < c} . ∀x:{x:ℝ| x ∈ [a, b]} . ((g x) ≤ c')))
13. bnd : ℝ
14. r0 ≤ bnd
15. ∀x:ℝ. ((x ∈ [a, b])
⇒ (|g x| ≤ bnd))
16. [-(bnd), x1] ⊆ <inr y , inl inl x1>
17. x : {x:ℝ| x ∈ [a, b]}
⊢ g[x] ∈ [-(bnd), x1]
Latex:
Latex:
1. y : Top
2. x1 : \mBbbR{}
3. n : \mBbbN{}\msupplus{}
4. a : \mBbbR{}
5. b : \mBbbR{}
6. a \mleq{} b
7. g : [a, b] {}\mrightarrow{}\mBbbR{}
8. \mforall{}x@0:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (g[x@0] \mmember{} <inr y , inl inl x1>)
9. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [a, b]\} . g[x] = g[y] supposing x = y
10. real-fun(g;a;b)
11. \mforall{}c:\mBbbR{}
((\mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (c < (g x)))
{}\mRightarrow{} (\mexists{}c':\{c':\mBbbR{}| c < c'\} . \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (c' \mleq{} (g x))))
12. \mforall{}c:\mBbbR{}
((\mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . ((g x) < c))
{}\mRightarrow{} (\mexists{}c':\{c':\mBbbR{}| c' < c\} . \mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . ((g x) \mleq{} c')))
13. bnd : \mBbbR{}
14. r0 \mleq{} bnd
15. \mforall{}x:\mBbbR{}. ((x \mmember{} [a, b]) {}\mRightarrow{} (|g x| \mleq{} bnd))
\mvdash{} \mexists{}c,d:\mBbbR{}. ([c, d] \msubseteq{} <inr y , inl inl x1> \mwedge{} (\mforall{}x:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (g[x] \mmember{} [c, d])))
By
Latex:
((D 0 With \mkleeneopen{}-(bnd)\mkleeneclose{} THENA Auto) THEN D 0 With \mkleeneopen{}x1\mkleeneclose{} THEN Auto)
Home
Index