Nuprl Lemma : interval-metric-space_wf

[I:Interval]. (interval-metric-space(I) ∈ MetricSpace)


Proof




Definitions occuring in Statement :  interval-metric-space: interval-metric-space(I) metric-space: MetricSpace interval: Interval uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T interval-metric-space: interval-metric-space(I) metric-space: MetricSpace prop: subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  real_wf i-member_wf rmetric_wf metric-on-subtype metric_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_pairEquality_alt setEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality independent_isectElimination lambdaEquality_alt setElimination rename setIsType universeIsType because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  (interval-metric-space(I)  \mmember{}  MetricSpace)



Date html generated: 2019_10_29-AM-11_12_55
Last ObjectModification: 2019_10_02-AM-09_53_19

Theory : reals


Home Index