Nuprl Lemma : interval-metric-space_wf
∀[I:Interval]. (interval-metric-space(I) ∈ MetricSpace)
Proof
Definitions occuring in Statement : 
interval-metric-space: interval-metric-space(I)
, 
metric-space: MetricSpace
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
interval-metric-space: interval-metric-space(I)
, 
metric-space: MetricSpace
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
real_wf, 
i-member_wf, 
rmetric_wf, 
metric-on-subtype, 
metric_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependent_pairEquality_alt, 
setEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
setIsType, 
universeIsType, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  (interval-metric-space(I)  \mmember{}  MetricSpace)
Date html generated:
2019_10_29-AM-11_12_55
Last ObjectModification:
2019_10_02-AM-09_53_19
Theory : reals
Home
Index