Nuprl Lemma : interval-retraction_functionality
∀[u,v,x,u',v',x':ℝ].
  (interval-retraction(u;v;x) = interval-retraction(u';v';x')) supposing ((x = x') and (v = v') and (u = u'))
Proof
Definitions occuring in Statement : 
interval-retraction: interval-retraction(u;v;r), 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
interval-retraction: interval-retraction(u;v;r), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmin_wf, 
rmax_wf, 
req_wf, 
real_wf, 
req_weakening, 
req_functionality, 
rmin_functionality, 
rmax_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[u,v,x,u',v',x':\mBbbR{}].
    (interval-retraction(u;v;x)  =  interval-retraction(u';v';x'))  supposing 
          ((x  =  x')  and 
          (v  =  v')  and 
          (u  =  u'))
Date html generated:
2017_10_03-AM-10_05_23
Last ObjectModification:
2017_07_10-PM-05_12_31
Theory : reals
Home
Index