Nuprl Lemma : interval-totally-bounded
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} .  totally-bounded(λx.(x ∈ [a, b]))
Proof
Definitions occuring in Statement : 
rccint: [l, u], 
i-member: r ∈ I, 
totally-bounded: totally-bounded(A), 
rleq: x ≤ y, 
real: ℝ, 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
totally-bounded: totally-bounded(A), 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
guard: {T}, 
sq_type: SQType(T), 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
nat: ℕ, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
rneq: x ≠ y, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
ge: i ≥ j , 
sq_exists: ∃x:A [B[x]], 
rless: x < y, 
nat_plus: ℕ+, 
squash: ↓T, 
sq_stable: SqStable(P), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top, 
true: True, 
less_than': less_than'(a;b), 
less_than: a < b, 
nequal: a ≠ b ∈ T , 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rdiv: (x/y), 
rset: Set(ℝ), 
cand: A c∧ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
i-member: r ∈ I, 
rccint: [l, u], 
rset-member: x ∈ A, 
real: ℝ, 
subtract: n - m, 
rge: x ≥ y, 
rgt: x > y
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .    totally-bounded(\mlambda{}x.(x  \mmember{}  [a,  b]))
 Date html generated: 
2020_05_20-AM-11_31_16
 Last ObjectModification: 
2020_01_06-PM-00_46_40
Theory : reals
Home
Index