Nuprl Lemma : ipolynomial-term-cons-req

[m:iMonomial()]. ∀[p:iMonomial() List].  ipolynomial-term([m p]) ≡ imonomial-term(m) (+) ipolynomial-term(p)


Proof




Definitions occuring in Statement :  req_int_terms: t1 ≡ t2 ipolynomial-term: ipolynomial-term(p) imonomial-term: imonomial-term(m) iMonomial: iMonomial() itermAdd: left (+) right cons: [a b] list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q ipolynomial-term: ipolynomial-term(p) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ifthenelse: if then else fi  bfalse: ff btrue: tt cons: [a b] req_int_terms: t1 ≡ t2 iMonomial: iMonomial() int_nzero: -o implies:  Q real_term_value: real_term_value(f;t) itermAdd: left (+) right int_term_ind: int_term_ind itermConstant: "const" uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) top: Top so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x]

Latex:
\mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term([m  /  p])  \mequiv{}  imonomial-term(m)  (+)  ipolynomial-term(p)



Date html generated: 2020_05_20-AM-10_54_02
Last ObjectModification: 2020_01_02-PM-02_12_28

Theory : reals


Home Index