Nuprl Lemma : ipolynomial-term-cons-req
∀[m:iMonomial()]. ∀[p:iMonomial() List]. ipolynomial-term([m / p]) ≡ imonomial-term(m) (+) ipolynomial-term(p)
Proof
Definitions occuring in Statement :
req_int_terms: t1 ≡ t2
,
ipolynomial-term: ipolynomial-term(p)
,
imonomial-term: imonomial-term(m)
,
iMonomial: iMonomial()
,
itermAdd: left (+) right
,
cons: [a / b]
,
list: T List
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
ipolynomial-term: ipolynomial-term(p)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
cons: [a / b]
,
req_int_terms: t1 ≡ t2
,
iMonomial: iMonomial()
,
int_nzero: ℤ-o
,
implies: P
⇒ Q
,
real_term_value: real_term_value(f;t)
,
itermAdd: left (+) right
,
int_term_ind: int_term_ind,
itermConstant: "const"
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
top: Top
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_lambda: λ2x.t[x]
Latex:
\mforall{}[m:iMonomial()]. \mforall{}[p:iMonomial() List].
ipolynomial-term([m / p]) \mequiv{} imonomial-term(m) (+) ipolynomial-term(p)
Date html generated:
2020_05_20-AM-10_54_02
Last ObjectModification:
2020_01_02-PM-02_12_28
Theory : reals
Home
Index