Nuprl Lemma : iproper-subinterval
∀I,J:Interval.  (I ⊆ J  ⇒ iproper(I) ⇒ iproper(J))
Proof
Definitions occuring in Statement : 
subinterval: I ⊆ J , 
iproper: iproper(I), 
interval: Interval, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
icompact: icompact(I), 
and: P ∧ Q, 
iproper: iproper(I), 
top: Top, 
i-finite: i-finite(I), 
rccint: [l, u], 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
cand: A c∧ B, 
true: True, 
subinterval: I ⊆ J , 
i-member: r ∈ I, 
guard: {T}, 
rbetween: x≤y≤z, 
i-nonvoid: i-nonvoid(I), 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q
Latex:
\mforall{}I,J:Interval.    (I  \msubseteq{}  J    {}\mRightarrow{}  iproper(I)  {}\mRightarrow{}  iproper(J))
Date html generated:
2020_05_20-AM-11_35_22
Last ObjectModification:
2019_12_06-AM-10_15_11
Theory : reals
Home
Index