Step
*
1
2
1
1
of Lemma
irrational-sqrt-number-lemma
1. n : ℕ
2. ∀a:ℤ. ∀b:ℕ+. (((a * a) = (n * b * b) ∈ ℤ)
⇒ (∀p:ℤ. (prime(p)
⇒ (p | b)
⇒ (p | a))))
3. x : ℕ
4. ∀x:ℕx. ((1 ≤ x)
⇒ (∀a:ℤ. (((a * a) = (n * x * x) ∈ ℤ)
⇒ (∃m:ℕn + 1. ((m * m) = n ∈ ℤ)))))
5. 1 ≤ x
6. a : ℤ
7. (a * a) = (n * x * x) ∈ ℤ
⊢ ∃m:ℕn + 1. ((m * m) = n ∈ ℤ)
BY
{ CaseNat 1 `x' }
1
1. n : ℕ
2. ∀a:ℤ. ∀b:ℕ+. (((a * a) = (n * b * b) ∈ ℤ)
⇒ (∀p:ℤ. (prime(p)
⇒ (p | b)
⇒ (p | a))))
3. x : ℕ
4. ∀x:ℕx. ((1 ≤ x)
⇒ (∀a:ℤ. (((a * a) = (n * x * x) ∈ ℤ)
⇒ (∃m:ℕn + 1. ((m * m) = n ∈ ℤ)))))
5. 1 ≤ x
6. a : ℤ
7. (a * a) = (n * x * x) ∈ ℤ
8. x = 1 ∈ ℤ
⊢ ∃m:ℕn + 1. ((m * m) = n ∈ ℤ)
2
1. n : ℕ
2. ∀a:ℤ. ∀b:ℕ+. (((a * a) = (n * b * b) ∈ ℤ)
⇒ (∀p:ℤ. (prime(p)
⇒ (p | b)
⇒ (p | a))))
3. x : ℕ
4. ∀x:ℕx. ((1 ≤ x)
⇒ (∀a:ℤ. (((a * a) = (n * x * x) ∈ ℤ)
⇒ (∃m:ℕn + 1. ((m * m) = n ∈ ℤ)))))
5. 1 ≤ x
6. a : ℤ
7. (a * a) = (n * x * x) ∈ ℤ
8. ¬(x = 1 ∈ ℤ)
⊢ ∃m:ℕn + 1. ((m * m) = n ∈ ℤ)
Latex:
Latex:
1. n : \mBbbN{}
2. \mforall{}a:\mBbbZ{}. \mforall{}b:\mBbbN{}\msupplus{}. (((a * a) = (n * b * b)) {}\mRightarrow{} (\mforall{}p:\mBbbZ{}. (prime(p) {}\mRightarrow{} (p | b) {}\mRightarrow{} (p | a))))
3. x : \mBbbN{}
4. \mforall{}x:\mBbbN{}x. ((1 \mleq{} x) {}\mRightarrow{} (\mforall{}a:\mBbbZ{}. (((a * a) = (n * x * x)) {}\mRightarrow{} (\mexists{}m:\mBbbN{}n + 1. ((m * m) = n)))))
5. 1 \mleq{} x
6. a : \mBbbZ{}
7. (a * a) = (n * x * x)
\mvdash{} \mexists{}m:\mBbbN{}n + 1. ((m * m) = n)
By
Latex:
CaseNat 1 `x'
Home
Index