Step
*
1
1
1
2
1
of Lemma
locally-non-constant-via-rational
.....wf.....
1. a : ℝ
2. b : ℝ
3. c : ℝ
4. f : [a, b] ⟶ℝ
5. u : ℝ
6. v : ℝ
7. a ≤ u
8. u < v
9. v ≤ b
10. z : ℝ
11. u ≤ z
12. z ≤ v
13. f(z) < c
14. k : ℕ+
15. ((r1/r(k)) + f(z)) < c
16. d : ℝ
17. r0 < d
18. ∀y:ℝ. (((a ≤ z) ∧ (z ≤ b))
⇒ ((a ≤ y) ∧ (y ≤ b))
⇒ (|z - y| ≤ d)
⇒ (|f[z] - f[y]| ≤ (r1/r(k))))
19. z < v
⊢ z + rmin(d;v - z) ∈ {y:ℝ| z < y}
BY
{ ((MemTypeCD THEN Auto) THEN nRSubtract ⌜z⌝ 0⋅ THEN BLemma `rmin_strict_ub` THEN Auto THEN nRAdd ⌜z⌝ 0⋅ THEN Auto) }
Latex:
Latex:
.....wf.....
1. a : \mBbbR{}
2. b : \mBbbR{}
3. c : \mBbbR{}
4. f : [a, b] {}\mrightarrow{}\mBbbR{}
5. u : \mBbbR{}
6. v : \mBbbR{}
7. a \mleq{} u
8. u < v
9. v \mleq{} b
10. z : \mBbbR{}
11. u \mleq{} z
12. z \mleq{} v
13. f(z) < c
14. k : \mBbbN{}\msupplus{}
15. ((r1/r(k)) + f(z)) < c
16. d : \mBbbR{}
17. r0 < d
18. \mforall{}y:\mBbbR{}
(((a \mleq{} z) \mwedge{} (z \mleq{} b)) {}\mRightarrow{} ((a \mleq{} y) \mwedge{} (y \mleq{} b)) {}\mRightarrow{} (|z - y| \mleq{} d) {}\mRightarrow{} (|f[z] - f[y]| \mleq{} (r1/r(k))))
19. z < v
\mvdash{} z + rmin(d;v - z) \mmember{} \{y:\mBbbR{}| z < y\}
By
Latex:
((MemTypeCD THEN Auto)
THEN nRSubtract \mkleeneopen{}z\mkleeneclose{} 0\mcdot{}
THEN BLemma `rmin\_strict\_ub`
THEN Auto
THEN nRAdd \mkleeneopen{}z\mkleeneclose{} 0\mcdot{}
THEN Auto)
Home
Index