Nuprl Lemma : locally-non-constant_wf
∀[a,b,c:ℝ]. ∀[f:[a, b] ⟶ℝ].  (locally-non-constant(f;a;b;c) ∈ ℙ)
Proof
Definitions occuring in Statement : 
locally-non-constant: locally-non-constant(f;a;b;c)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
locally-non-constant: locally-non-constant(f;a;b;c)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
guard: {T}
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
real_wf, 
rleq_wf, 
rless_wf, 
exists_wf, 
rneq_wf, 
r-ap_wf, 
rccint_wf, 
rleq_transitivity, 
rfun_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
because_Cache, 
functionEquality, 
hypothesisEquality, 
productEquality, 
independent_isectElimination, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[a,b,c:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    (locally-non-constant(f;a;b;c)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-09_24_02
Last ObjectModification:
2015_12_27-PM-11_21_33
Theory : reals
Home
Index