Nuprl Lemma : locally-non-constant_wf

[a,b,c:ℝ]. ∀[f:[a, b] ⟶ℝ].  (locally-non-constant(f;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  locally-non-constant: locally-non-constant(f;a;b;c) rfun: I ⟶ℝ rccint: [l, u] real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T locally-non-constant: locally-non-constant(f;a;b;c) so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q uimplies: supposing a i-member: r ∈ I rccint: [l, u] guard: {T} so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  all_wf real_wf rleq_wf rless_wf exists_wf rneq_wf r-ap_wf rccint_wf rleq_transitivity rfun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality because_Cache functionEquality hypothesisEquality productEquality independent_isectElimination independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[a,b,c:\mBbbR{}].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    (locally-non-constant(f;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-09_24_02
Last ObjectModification: 2015_12_27-PM-11_21_33

Theory : reals


Home Index