Step
*
1
of Lemma
m-TB-sup-and-inf
.....assertion.....
1. [X] : Type
2. dX : metric(X)
3. m-TB(X;dX)
4. f : X ⟶ ℝ
5. UC(f:X ⟶ ℝ)
6. m-TB(f[X];image-metric(rmetric()))
7. λr.∃x:X. (r = (f x)) ∈ Set(ℝ)
⊢ totally-bounded(λr.∃x:X. (r = (f x)))
BY
{ ((D 0 THEN Auto)
THEN (InstLemma `small-reciprocal-real` [⌜e⌝]⋅ THENA Auto)
THEN D -1
THEN (RWO "m-TB-iff" (-6) THENA Auto)
THEN (D -6 With ⌜k - 1⌝ THENA Auto)
THEN (Subst' (k - 1) + 1 ~ k -1 THENA Auto)
THEN ParallelLast
THEN ExRepD) }
1
1. [X] : Type
2. dX : metric(X)
3. m-TB(X;dX)
4. f : X ⟶ ℝ
5. UC(f:X ⟶ ℝ)
6. λr.∃x:X. (r = (f x)) ∈ Set(ℝ)
7. e : ℝ
8. r0 < e
9. k : ℕ+
10. (r1/r(k)) < e
11. n : ℕ+
12. xs : ℕn ⟶ f[X]
13. ∀x:f[X]. ∃i:ℕn. (mdist(image-metric(rmetric());x;xs i) ≤ (r1/r(k)))
⊢ ∃a:ℕn ⟶ ℝ. ((∀i:ℕn. (a i ∈ λr.∃x:X. (r = (f x)))) ∧ (∀x:ℝ. ((x ∈ λr.∃x:X. (r = (f x)))
⇒ (∃i:ℕn. (|x - a i| < e)))))
Latex:
Latex:
.....assertion.....
1. [X] : Type
2. dX : metric(X)
3. m-TB(X;dX)
4. f : X {}\mrightarrow{} \mBbbR{}
5. UC(f:X {}\mrightarrow{} \mBbbR{})
6. m-TB(f[X];image-metric(rmetric()))
7. \mlambda{}r.\mexists{}x:X. (r = (f x)) \mmember{} Set(\mBbbR{})
\mvdash{} totally-bounded(\mlambda{}r.\mexists{}x:X. (r = (f x)))
By
Latex:
((D 0 THEN Auto)
THEN (InstLemma `small-reciprocal-real` [\mkleeneopen{}e\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN (RWO "m-TB-iff" (-6) THENA Auto)
THEN (D -6 With \mkleeneopen{}k - 1\mkleeneclose{} THENA Auto)
THEN (Subst' (k - 1) + 1 \msim{} k -1 THENA Auto)
THEN ParallelLast
THEN ExRepD)
Home
Index