Step
*
1
of Lemma
m-inf-property
1. [X] : Type
2. d : metric(X)
3. mtb : m-TB(X;d)
4. f : X ⟶ ℝ
5. mc : UC(f:X ⟶ ℝ)
6. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((∃x@0:X. (x = (f x@0))) ∧ (x < (m-inf{i:l}(d;mtb;f;mc) + e)))))
7. ∀x:ℝ. ((∃x@0:X. (x = (f x@0)))
⇒ (m-inf{i:l}(d;mtb;f;mc) ≤ x))
⊢ ∀x:X. (m-inf{i:l}(d;mtb;f;mc) ≤ (f x))
BY
{ ((D 0 THENA Auto) THEN InstHyp [⌜f x⌝] (-2)⋅ THEN Auto) }
Latex:
Latex:
1. [X] : Type
2. d : metric(X)
3. mtb : m-TB(X;d)
4. f : X {}\mrightarrow{} \mBbbR{}
5. mc : UC(f:X {}\mrightarrow{} \mBbbR{})
6. \mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x:\mBbbR{}. ((\mexists{}x@0:X. (x = (f x@0))) \mwedge{} (x < (m-inf\{i:l\}(d;mtb;f;mc) + e)))))
7. \mforall{}x:\mBbbR{}. ((\mexists{}x@0:X. (x = (f x@0))) {}\mRightarrow{} (m-inf\{i:l\}(d;mtb;f;mc) \mleq{} x))
\mvdash{} \mforall{}x:X. (m-inf\{i:l\}(d;mtb;f;mc) \mleq{} (f x))
By
Latex:
((D 0 THENA Auto) THEN InstHyp [\mkleeneopen{}f x\mkleeneclose{}] (-2)\mcdot{} THEN Auto)
Home
Index