Nuprl Lemma : m-interior-point_wf
∀[X,A:Type].  ∀[d:metric(X)]. ∀[p:A].  (m-interior-point(X;d;A;p) ∈ ℙ) supposing strong-subtype(A;X)
Proof
Definitions occuring in Statement : 
m-interior-point: m-interior-point(X;d;A;p), 
metric: metric(X), 
strong-subtype: strong-subtype(A;B), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
prop: ℙ, 
m-interior-point: m-interior-point(X;d;A;p), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
nat_plus: ℕ+, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
so_apply: x[s]
Latex:
\mforall{}[X,A:Type].    \mforall{}[d:metric(X)].  \mforall{}[p:A].    (m-interior-point(X;d;A;p)  \mmember{}  \mBbbP{})  supposing  strong-subtype(A;X)
Date html generated:
2020_05_20-AM-11_43_32
Last ObjectModification:
2019_11_07-AM-10_10_16
Theory : reals
Home
Index