Nuprl Lemma : m-ptwise-cont_wf

[X:Type]. ∀[dx:metric(X)]. ∀[Y:Type]. ∀[dy:metric(Y)]. ∀[f:X ⟶ Y].  (PtwiseCONT(f:X ⟶ Y) ∈ ℙ)


Proof




Definitions occuring in Statement :  m-ptwise-cont: PtwiseCONT(f:X ⟶ Y) metric: metric(X) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T m-ptwise-cont: PtwiseCONT(f:X ⟶ Y) so_lambda: λ2x.t[x] prop: all: x:A. B[x] implies:  Q nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_apply: x[s]

Latex:
\mforall{}[X:Type].  \mforall{}[dx:metric(X)].  \mforall{}[Y:Type].  \mforall{}[dy:metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    (PtwiseCONT(f:X  {}\mrightarrow{}  Y)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-11_48_27
Last ObjectModification: 2019_11_08-AM-10_03_32

Theory : reals


Home Index