Step
*
1
2
1
of Lemma
m-regularize-mcauchy
1. X : Type
2. d : metric(X)
3. s : ℕ ⟶ X
4. k : ℕ+
5. n : ℕ
6. m : ℕn
7. (6 * k) ≤ n
8. (6 * k) ≤ m
9. v : ℕ(n + 1) + 1
10. v1 : ℕ(m + 1) + 1
11. v = 0 ∈ ℤ
⇐⇒ ∀n:ℕn + 1. m-not-reg(d;s;n) = ff
12. ¬0 < v1
13. v1 = 0 ∈ ℤ
14. ∀n:ℕm + 1. m-not-reg(d;s;n) = ff
15. 0 < v
16. ∀n:ℕv - 1. m-not-reg(d;s;n) = ff
17. m-not-reg(d;s;v - 1) = tt
⊢ mdist(d;s (v - 2);s m) ≤ (r1/r(k))
BY
{ ((Assert ¬v - 1 < m + 1 BY ((D 0 THENA Auto) THEN D -5 With ⌜v - 1⌝ THEN Auto)) THEN (Assert m < v - 1 BY Auto)) }
1
1. X : Type
2. d : metric(X)
3. s : ℕ ⟶ X
4. k : ℕ+
5. n : ℕ
6. m : ℕn
7. (6 * k) ≤ n
8. (6 * k) ≤ m
9. v : ℕ(n + 1) + 1
10. v1 : ℕ(m + 1) + 1
11. v = 0 ∈ ℤ
⇐⇒ ∀n:ℕn + 1. m-not-reg(d;s;n) = ff
12. ¬0 < v1
13. v1 = 0 ∈ ℤ
14. ∀n:ℕm + 1. m-not-reg(d;s;n) = ff
15. 0 < v
16. ∀n:ℕv - 1. m-not-reg(d;s;n) = ff
17. m-not-reg(d;s;v - 1) = tt
18. ¬v - 1 < m + 1
19. m < v - 1
⊢ mdist(d;s (v - 2);s m) ≤ (r1/r(k))
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. s : \mBbbN{} {}\mrightarrow{} X
4. k : \mBbbN{}\msupplus{}
5. n : \mBbbN{}
6. m : \mBbbN{}n
7. (6 * k) \mleq{} n
8. (6 * k) \mleq{} m
9. v : \mBbbN{}(n + 1) + 1
10. v1 : \mBbbN{}(m + 1) + 1
11. v = 0 \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}n + 1. m-not-reg(d;s;n) = ff
12. \mneg{}0 < v1
13. v1 = 0
14. \mforall{}n:\mBbbN{}m + 1. m-not-reg(d;s;n) = ff
15. 0 < v
16. \mforall{}n:\mBbbN{}v - 1. m-not-reg(d;s;n) = ff
17. m-not-reg(d;s;v - 1) = tt
\mvdash{} mdist(d;s (v - 2);s m) \mleq{} (r1/r(k))
By
Latex:
((Assert \mneg{}v - 1 < m + 1 BY
((D 0 THENA Auto) THEN D -5 With \mkleeneopen{}v - 1\mkleeneclose{} THEN Auto))
THEN (Assert m < v - 1 BY
Auto)
)
Home
Index