Nuprl Lemma : m-sphere-subtype-m-ball-boundary

[X:Type]. ∀[d:metric(X)]. ∀[c:X]. ∀[r:ℝ].
  m-sphere(X;d;c;r) ⊆m-boundary(X;d;m-ball(X;d;c;r)) 
  supposing ∀c,x:X. ∀M:ℕ+.
              ∃y:X. ((mdist(d;c;y) (mdist(d;c;x) mdist(d;x;y))) ∧ (r0 < mdist(d;y;x)) ∧ (mdist(d;y;x) ≤ (r1/r(M))))


Proof




Definitions occuring in Statement :  m-sphere: m-sphere(X;d;c;r) m-ball: m-ball(X;d;c;r) m-boundary: m-boundary(X;d;A) mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rleq: x ≤ y rless: x < y req: y radd: b int-to-real: r(n) real: nat_plus: + uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B m-sphere: m-sphere(X;d;c;r) m-boundary: m-boundary(X;d;A) guard: {T} m-ball: m-ball(X;d;c;r) prop: not: ¬A implies:  Q m-interior-point: m-interior-point(X;d;A;p) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q squash: T false: False so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top uiff: uiff(P;Q) req_int_terms: t1 ≡ t2

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[c:X].  \mforall{}[r:\mBbbR{}].
    m-sphere(X;d;c;r)  \msubseteq{}r  m-boundary(X;d;m-ball(X;d;c;r)) 
    supposing  \mforall{}c,x:X.  \mforall{}M:\mBbbN{}\msupplus{}.
                            \mexists{}y:X
                              ((mdist(d;c;y)  =  (mdist(d;c;x)  +  mdist(d;x;y)))
                              \mwedge{}  (r0  <  mdist(d;y;x))
                              \mwedge{}  (mdist(d;y;x)  \mleq{}  (r1/r(M))))



Date html generated: 2020_05_20-AM-11_47_28
Last ObjectModification: 2019_11_07-PM-00_30_17

Theory : reals


Home Index