Step
*
2
of Lemma
m-sup-property
1. [X] : Type
2. d : metric(X)
3. mtb : m-TB(X;d)
4. f : X ⟶ ℝ
5. mc : UC(f:X ⟶ ℝ)
6. ∀x:ℝ. ((∃x@0:X. (x = (f x@0)))
⇒ (x ≤ m-sup{i:l}(d;mtb;f;mc)))
7. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((∃x@0:X. (x = (f x@0))) ∧ ((m-sup{i:l}(d;mtb;f;mc) - e) < x))))
8. e : ℝ
9. r0 < e
10. ∃x:ℝ. ((∃x@0:X. (x = (f x@0))) ∧ ((m-sup{i:l}(d;mtb;f;mc) - e) < x))
⊢ ∃x:X. ((m-sup{i:l}(d;mtb;f;mc) - e) < (f x))
BY
{ (ExRepD THEN RenameVar `z' (-3) THEN D 0 With ⌜z⌝ THEN Auto) }
Latex:
Latex:
1. [X] : Type
2. d : metric(X)
3. mtb : m-TB(X;d)
4. f : X {}\mrightarrow{} \mBbbR{}
5. mc : UC(f:X {}\mrightarrow{} \mBbbR{})
6. \mforall{}x:\mBbbR{}. ((\mexists{}x@0:X. (x = (f x@0))) {}\mRightarrow{} (x \mleq{} m-sup\{i:l\}(d;mtb;f;mc)))
7. \mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x:\mBbbR{}. ((\mexists{}x@0:X. (x = (f x@0))) \mwedge{} ((m-sup\{i:l\}(d;mtb;f;mc) - e) < x))))
8. e : \mBbbR{}
9. r0 < e
10. \mexists{}x:\mBbbR{}. ((\mexists{}x@0:X. (x = (f x@0))) \mwedge{} ((m-sup\{i:l\}(d;mtb;f;mc) - e) < x))
\mvdash{} \mexists{}x:X. ((m-sup\{i:l\}(d;mtb;f;mc) - e) < (f x))
By
Latex:
(ExRepD THEN RenameVar `z' (-3) THEN D 0 With \mkleeneopen{}z\mkleeneclose{} THEN Auto)
Home
Index