Nuprl Lemma : max-metric-mdist-from-zero-rless

c:{c:ℝr0 < c} . ∀n:ℕ. ∀x:ℝ^n.  ((∀i:ℕn. (|x i| < c))  (mdist(max-metric(n);x;λi.r0) < c))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) real-vec: ^n mdist: mdist(d;x;y) rless: x < y rabs: |x| int-to-real: r(n) real: int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T real-vec: ^n uall: [x:A]. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: prop: guard: {T} uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top

Latex:
\mforall{}c:\{c:\mBbbR{}|  r0  <  c\}  .  \mforall{}n:\mBbbN{}.  \mforall{}x:\mBbbR{}\^{}n.    ((\mforall{}i:\mBbbN{}n.  (|x  i|  <  c))  {}\mRightarrow{}  (mdist(max-metric(n);x;\mlambda{}i.r0)  <  c))



Date html generated: 2020_05_20-PM-00_43_13
Last ObjectModification: 2019_11_21-AM-06_13_40

Theory : reals


Home Index