Step
*
3
of Lemma
max-metric-mdist-from-zero
1. c : {c:ℝ| r0 ≤ c}
2. n : ℤ
3. 0 < n
4. x : ℝ^n
5. ∀i:ℕn - 1. ((-(c) ≤ (x i)) ∧ ((x i) ≤ c)) supposing primrec(n - 1;r0;λi,r. rmax(r;|(x i) - r0|)) ≤ c
6. primrec(n - 1;r0;λi,r. rmax(r;|(x i) - r0|)) ≤ c supposing ∀i:ℕn - 1. ((-(c) ≤ (x i)) ∧ ((x i) ≤ c))
7. ∀i:ℕn. ((-(c) ≤ (x i)) ∧ ((x i) ≤ c))
⊢ (r0 - c) ≤ (x (n - 1))
BY
{ (D -1 With ⌜n - 1⌝ THEN Auto) }
Latex:
Latex:
1. c : \{c:\mBbbR{}| r0 \mleq{} c\}
2. n : \mBbbZ{}
3. 0 < n
4. x : \mBbbR{}\^{}n
5. \mforall{}i:\mBbbN{}n - 1. ((-(c) \mleq{} (x i)) \mwedge{} ((x i) \mleq{} c)) supposing primrec(n - 1;r0;\mlambda{}i,r. rmax(r;|(x i) - r0|)) \000C\mleq{} c
6. primrec(n - 1;r0;\mlambda{}i,r. rmax(r;|(x i) - r0|)) \mleq{} c supposing \mforall{}i:\mBbbN{}n - 1. ((-(c) \mleq{} (x i)) \mwedge{} ((x i) \mleq{} \000Cc))
7. \mforall{}i:\mBbbN{}n. ((-(c) \mleq{} (x i)) \mwedge{} ((x i) \mleq{} c))
\mvdash{} (r0 - c) \mleq{} (x (n - 1))
By
Latex:
(D -1 With \mkleeneopen{}n - 1\mkleeneclose{} THEN Auto)
Home
Index