Nuprl Lemma : mcompact_wf

[X:Type]. ∀[d:metric(X)].  (mcompact(X;d) ∈ Type)


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  prop: mcompact: mcompact(X;d) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe metric_wf m-TB_wf mk-metric-space_wf mcomplete_wf
Rules used in proof :  universeEquality instantiate inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (mcompact(X;d)  \mmember{}  Type)



Date html generated: 2019_10_30-AM-07_06_22
Last ObjectModification: 2019_10_25-PM-01_14_13

Theory : reals


Home Index