Nuprl Lemma : mcompact_wf
∀[X:Type]. ∀[d:metric(X)].  (mcompact(X;d) ∈ Type)
Proof
Definitions occuring in Statement : 
mcompact: mcompact(X;d)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
mcompact: mcompact(X;d)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
metric_wf, 
m-TB_wf, 
mk-metric-space_wf, 
mcomplete_wf
Rules used in proof : 
universeEquality, 
instantiate, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (mcompact(X;d)  \mmember{}  Type)
Date html generated:
2019_10_30-AM-07_06_22
Last ObjectModification:
2019_10_25-PM-01_14_13
Theory : reals
Home
Index