Nuprl Lemma : mcomplete_wf

[M:MetricSpace]. (mcomplete(M) ∈ ℙ)


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) metric-space: MetricSpace uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mcomplete: mcomplete(M) metric-space: MetricSpace prop: all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  metric_wf nat_wf mcauchy_wf istype-nat mconverges_wf metric-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule spreadEquality sqequalHypSubstitution productElimination thin dependent_pairEquality_alt hypothesisEquality universeIsType extract_by_obid isectElimination hypothesis functionEquality lambdaEquality_alt applyEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[M:MetricSpace].  (mcomplete(M)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-06_42_10
Last ObjectModification: 2019_10_02-AM-10_54_44

Theory : reals


Home Index