Nuprl Lemma : mcomplete_wf
∀[M:MetricSpace]. (mcomplete(M) ∈ ℙ)
Proof
Definitions occuring in Statement : 
mcomplete: mcomplete(M)
, 
metric-space: MetricSpace
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mcomplete: mcomplete(M)
, 
metric-space: MetricSpace
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
metric_wf, 
nat_wf, 
mcauchy_wf, 
istype-nat, 
mconverges_wf, 
metric-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairEquality_alt, 
hypothesisEquality, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesis, 
functionEquality, 
lambdaEquality_alt, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[M:MetricSpace].  (mcomplete(M)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-06_42_10
Last ObjectModification:
2019_10_02-AM-10_54_44
Theory : reals
Home
Index