Nuprl Lemma : mcomplete-rn-prod-metric

n:ℕmcomplete(ℝ^n with rn-prod-metric(n))


Proof




Definitions occuring in Statement :  rn-prod-metric: rn-prod-metric(n) real-vec: ^n mcomplete: mcomplete(M) mk-metric-space: with d nat: all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q mcomplete: mcomplete(M) mk-metric-space: with d prod-metric-space: prod-metric-space(k;X) pi1: fst(t) pi2: snd(t) rn-prod-metric: rn-prod-metric(n) real-vec: ^n
Lemmas referenced :  prod-metric-space-complete mk-metric-space_wf real_wf rmetric_wf int_seg_wf reals-complete istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality lambdaEquality_alt isectElimination hypothesis universeIsType natural_numberEquality setElimination rename independent_functionElimination sqequalRule

Latex:
\mforall{}n:\mBbbN{}.  mcomplete(\mBbbR{}\^{}n  with  rn-prod-metric(n))



Date html generated: 2019_10_30-AM-08_33_37
Last ObjectModification: 2019_10_02-AM-11_01_06

Theory : reals


Home Index