Nuprl Lemma : mcomplete-rn-prod-metric
∀n:ℕ. mcomplete(ℝ^n with rn-prod-metric(n))
Proof
Definitions occuring in Statement : 
rn-prod-metric: rn-prod-metric(n), 
real-vec: ℝ^n, 
mcomplete: mcomplete(M), 
mk-metric-space: X with d, 
nat: ℕ, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
mcomplete: mcomplete(M), 
mk-metric-space: X with d, 
prod-metric-space: prod-metric-space(k;X), 
pi1: fst(t), 
pi2: snd(t), 
rn-prod-metric: rn-prod-metric(n), 
real-vec: ℝ^n
Lemmas referenced : 
prod-metric-space-complete, 
mk-metric-space_wf, 
real_wf, 
rmetric_wf, 
int_seg_wf, 
reals-complete, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
isectElimination, 
hypothesis, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
independent_functionElimination, 
sqequalRule
Latex:
\mforall{}n:\mBbbN{}.  mcomplete(\mBbbR{}\^{}n  with  rn-prod-metric(n))
Date html generated:
2019_10_30-AM-08_33_37
Last ObjectModification:
2019_10_02-AM-11_01_06
Theory : reals
Home
Index