Step
*
1
1
2
of Lemma
mcomplete-stable-union
1. X : Type
2. d : metric(X)
3. T : Type
4. P : T ⟶ X ⟶ ℙ
5. ∀i:T. ∀x,y:X. (P[i;x]
⇒ y ≡ x
⇒ P[i;y])
6. finite(T)
7. ∀x:ℕ ⟶ X. (mcauchy(d;n.x n)
⇒ x n↓ as n→∞)
8. cmp : ∀i:T. mcompact({x:X| P[i;x]} ;d)
9. x : ℕ ⟶ stable-union(X;T;i,x.P[i;x])
10. mcauchy(d;n.x n)
11. y : X
12. lim n→∞.x n = y
13. ∀i:T. ∃n:ℕ+. ∀a:{x:X| P[i;x]} . ((r1/r(n)) ≤ mdist(d;y;a))
14. ∃n:ℕ+. ∀i:T. ∀a:{x:X| P[i;x]} . ((r1/r(n)) ≤ mdist(d;y;a))
⊢ False
BY
{ (D -1
THEN (D -4 With ⌜n + 1⌝ THENA Auto)
THEN D -1
THEN (InstHyp [⌜N⌝] (-1)⋅ THENA Auto)
THEN MoveToConcl (-1)
THEN (GenConclTerm ⌜x N⌝⋅ THENA Auto)
THEN Thin (-1)
THEN D -1
THEN Auto) }
1
1. X : Type
2. d : metric(X)
3. T : Type
4. P : T ⟶ X ⟶ ℙ
5. ∀i:T. ∀x,y:X. (P[i;x]
⇒ y ≡ x
⇒ P[i;y])
6. finite(T)
7. ∀x:ℕ ⟶ X. (mcauchy(d;n.x n)
⇒ x n↓ as n→∞)
8. cmp : ∀i:T. mcompact({x:X| P[i;x]} ;d)
9. x : ℕ ⟶ stable-union(X;T;i,x.P[i;x])
10. mcauchy(d;n.x n)
11. y : X
12. ∀i:T. ∃n:ℕ+. ∀a:{x:X| P[i;x]} . ((r1/r(n)) ≤ mdist(d;y;a))
13. n : ℕ+
14. ∀i:T. ∀a:{x:X| P[i;x]} . ((r1/r(n)) ≤ mdist(d;y;a))
15. N : ℕ
16. ∀n@0:ℕ. ((N ≤ n@0)
⇒ (mdist(d;x n@0;y) ≤ (r1/r(n + 1))))
17. v : X
18. ∃i:T. P[i;v]
19. mdist(d;v;y) ≤ (r1/r(n + 1))
⊢ False
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. T : Type
4. P : T {}\mrightarrow{} X {}\mrightarrow{} \mBbbP{}
5. \mforall{}i:T. \mforall{}x,y:X. (P[i;x] {}\mRightarrow{} y \mequiv{} x {}\mRightarrow{} P[i;y])
6. finite(T)
7. \mforall{}x:\mBbbN{} {}\mrightarrow{} X. (mcauchy(d;n.x n) {}\mRightarrow{} x n\mdownarrow{} as n\mrightarrow{}\minfty{})
8. cmp : \mforall{}i:T. mcompact(\{x:X| P[i;x]\} ;d)
9. x : \mBbbN{} {}\mrightarrow{} stable-union(X;T;i,x.P[i;x])
10. mcauchy(d;n.x n)
11. y : X
12. lim n\mrightarrow{}\minfty{}.x n = y
13. \mforall{}i:T. \mexists{}n:\mBbbN{}\msupplus{}. \mforall{}a:\{x:X| P[i;x]\} . ((r1/r(n)) \mleq{} mdist(d;y;a))
14. \mexists{}n:\mBbbN{}\msupplus{}. \mforall{}i:T. \mforall{}a:\{x:X| P[i;x]\} . ((r1/r(n)) \mleq{} mdist(d;y;a))
\mvdash{} False
By
Latex:
(D -1
THEN (D -4 With \mkleeneopen{}n + 1\mkleeneclose{} THENA Auto)
THEN D -1
THEN (InstHyp [\mkleeneopen{}N\mkleeneclose{}] (-1)\mcdot{} THENA Auto)
THEN MoveToConcl (-1)
THEN (GenConclTerm \mkleeneopen{}x N\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN D -1
THEN Auto)
Home
Index