Nuprl Lemma : mdist-max-metric-strict-lb

c:{c:ℝr0 < c} . ∀n:ℕ. ∀x,y:ℝ^n.  ((∀i:ℕn. (|(x i) i| < c))  (mdist(max-metric(n);x;y) < c))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) real-vec: ^n mdist: mdist(d;x;y) rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  max-metric: max-metric(n) mdist: mdist(d;x;y) all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T top: Top lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt sq_stable: SqStable(P) squash: T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: nat: less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) real-vec: ^n cand: c∧ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rless: x < y sq_exists: x:A [B[x]] nat_plus: +

Latex:
\mforall{}c:\{c:\mBbbR{}|  r0  <  c\}  .  \mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    ((\mforall{}i:\mBbbN{}n.  (|(x  i)  -  y  i|  <  c))  {}\mRightarrow{}  (mdist(max-metric(n);x;y)  <  c))



Date html generated: 2020_05_20-PM-00_42_47
Last ObjectModification: 2019_11_21-AM-06_09_21

Theory : reals


Home Index