Nuprl Lemma : mdist-max-metric-ub
∀[n:ℕ]. ∀[x,y:ℝ^n]. ∀i:ℕn. (|(x i) - y i| ≤ mdist(max-metric(n);x;y))
Proof
Definitions occuring in Statement :
max-metric: max-metric(n)
,
real-vec: ℝ^n
,
mdist: mdist(d;x;y)
,
rleq: x ≤ y
,
rabs: |x|
,
rsub: x - y
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
apply: f a
,
natural_number: $n
Definitions unfolded in proof :
max-metric: max-metric(n)
,
mdist: mdist(d;x;y)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
le: A ≤ B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
less_than': less_than'(a;b)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
bfalse: ff
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
decidable: Dec(P)
,
real-vec: ℝ^n
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x,y:\mBbbR{}\^{}n]. \mforall{}i:\mBbbN{}n. (|(x i) - y i| \mleq{} mdist(max-metric(n);x;y))
Date html generated:
2020_05_20-PM-00_42_21
Last ObjectModification:
2019_11_12-AM-11_17_22
Theory : reals
Home
Index