Nuprl Lemma : mesh-property

I:Interval
  (icompact(I)
   (∀p:partition(I). ∀e:ℝ.
        ((r0 < e)
         ∀x:ℝ((x ∈ I)  (∃i:ℕ||full-partition(I;p)||. (|x full-partition(I;p)[i]| ≤ e))) 
           supposing partition-mesh(I;p) ≤ e)))


Proof




Definitions occuring in Statement :  partition-mesh: partition-mesh(I;p) full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) i-member: r ∈ I interval: Interval rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: select: L[n] length: ||as|| int_seg: {i..j-} uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q full-partition: full-partition(I;p) rless: x < y sq_exists: x:A [B[x]] nat_plus: + decidable: Dec(P) or: P ∨ Q partition: partition(I) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: guard: {T} uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B real: sq_stable: SqStable(P) squash: T sq_type: SQType(T) cand: c∧ B ge: i ≥  nat: less_than': less_than'(a;b) true: True select: L[n] cons: [a b] subtract: m less_than: a < b iff: ⇐⇒ Q rev_implies:  Q icompact: icompact(I) last: last(L) so_lambda: λ2x.t[x] so_apply: x[s] append: as bs list_ind: list_ind nil: [] it: right-endpoint: right-endpoint(I) pi2: snd(t) endpoints: endpoints(I) left-endpoint: left-endpoint(I) pi1: fst(t) rbetween: x≤y≤z

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}e:\mBbbR{}.
                ((r0  <  e)
                {}\mRightarrow{}  \mforall{}x:\mBbbR{}.  ((x  \mmember{}  I)  {}\mRightarrow{}  (\mexists{}i:\mBbbN{}||full-partition(I;p)||.  (|x  -  full-partition(I;p)[i]|  \mleq{}  e))) 
                      supposing  partition-mesh(I;p)  \mleq{}  e)))



Date html generated: 2020_05_20-AM-11_37_43
Last ObjectModification: 2019_12_28-PM-09_01_42

Theory : reals


Home Index