Nuprl Lemma : metric-leq-cauchy

[X:Type]. ∀[d1,d2:metric(X)].  ∀c:{c:ℝr0 < c} (d1 ≤ c*d2  (∀x:ℕ ⟶ X. (mcauchy(d2;n.x n)  mcauchy(d1;n.x n))))


Proof




Definitions occuring in Statement :  mcauchy: mcauchy(d;n.x[n]) metric-leq: d1 ≤ d2 scale-metric: c*d metric: metric(X) rless: x < y int-to-real: r(n) real: nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] and: P ∧ Q nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False mcauchy: mcauchy(d;n.x[n]) nat_plus: + ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) prop: sq_exists: x:A [B[x]] metric-leq: d1 ≤ d2 rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q metric: metric(X) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y scale-metric: c*d mdist: mdist(d;x;y) sq_stable: SqStable(P) squash: T nequal: a ≠ b ∈  rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 top: Top

Latex:
\mforall{}[X:Type].  \mforall{}[d1,d2:metric(X)].
    \mforall{}c:\{c:\mBbbR{}|  r0  <  c\}  .  (d1  \mleq{}  c*d2  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}  {}\mrightarrow{}  X.  (mcauchy(d2;n.x  n)  {}\mRightarrow{}  mcauchy(d1;n.x  n))))



Date html generated: 2020_05_20-AM-11_57_12
Last ObjectModification: 2020_01_06-PM-00_18_14

Theory : reals


Home Index