Step
*
of Lemma
metric-leq-complete
No Annotations
∀[X:Type]. ∀[d1,d2:metric(X)].
(d2 ≤ d1
⇒ (∀x:ℕ ⟶ X. (mcauchy(d2;n.x n)
⇒ (∃y:ℕ ⟶ X. (subsequence(a,b.a ≡ b;n.x n;n.y n) ∧ mcauchy(d1;n.y n)))))
⇒ mcomplete(X with d1)
⇒ mcomplete(X with d2))
BY
{ (InstLemma `metric-leq-converges-to` []
THEN RepeatFor 4 ((ParallelLast' THENA Auto))
THEN RepUR ``mcomplete`` 0
THEN Auto) }
1
1. [X] : Type
2. [d1] : metric(X)
3. [d2] : metric(X)
4. d2 ≤ d1
5. ∀x:ℕ ⟶ X. ∀y:X. (lim n→∞.x[n] = y
⇒ lim n→∞.x[n] = y)
6. ∀x:ℕ ⟶ X. (mcauchy(d2;n.x n)
⇒ (∃y:ℕ ⟶ X. (subsequence(a,b.a ≡ b;n.x n;n.y n) ∧ mcauchy(d1;n.y n))))
7. ∀x:ℕ ⟶ X. (mcauchy(d1;n.x n)
⇒ x n↓ as n→∞)
8. x : ℕ ⟶ X
9. mcauchy(d2;n.x n)
⊢ x n↓ as n→∞
Latex:
Latex:
No Annotations
\mforall{}[X:Type]. \mforall{}[d1,d2:metric(X)].
(d2 \mleq{} d1
{}\mRightarrow{} (\mforall{}x:\mBbbN{} {}\mrightarrow{} X
(mcauchy(d2;n.x n)
{}\mRightarrow{} (\mexists{}y:\mBbbN{} {}\mrightarrow{} X. (subsequence(a,b.a \mequiv{} b;n.x n;n.y n) \mwedge{} mcauchy(d1;n.y n)))))
{}\mRightarrow{} mcomplete(X with d1)
{}\mRightarrow{} mcomplete(X with d2))
By
Latex:
(InstLemma `metric-leq-converges-to` []
THEN RepeatFor 4 ((ParallelLast' THENA Auto))
THEN RepUR ``mcomplete`` 0
THEN Auto)
Home
Index