Nuprl Lemma : minus-poly-req
∀p:iPolynomial(). ipolynomial-term(minus-poly(p)) ≡ "-"ipolynomial-term(p)
Proof
Definitions occuring in Statement :
req_int_terms: t1 ≡ t2
,
minus-poly: minus-poly(p)
,
ipolynomial-term: ipolynomial-term(p)
,
iPolynomial: iPolynomial()
,
itermMinus: "-"num
,
all: ∀x:A. B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iPolynomial: iPolynomial()
,
member: t ∈ T
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
squash: ↓T
,
req_int_terms: t1 ≡ t2
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
uimplies: b supposing a
,
less_than: a < b
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
nat: ℕ
,
ge: i ≥ j
,
guard: {T}
,
cons: [a / b]
,
less_than': less_than'(a;b)
,
colength: colength(L)
,
nil: []
,
it: ⋅
,
sq_type: SQType(T)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uiff: uiff(P;Q)
,
ipolynomial-term: ipolynomial-term(p)
,
minus-poly: minus-poly(p)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
real_term_value: real_term_value(f;t)
,
itermConstant: "const"
,
int_term_ind: int_term_ind,
itermMinus: "-"num
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
bool: 𝔹
,
unit: Unit
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
,
iMonomial: iMonomial()
,
int_nzero: ℤ-o
,
rev_uimplies: rev_uimplies(P;Q)
,
minus-monomial: minus-monomial(m)
,
itermAdd: left (+) right
Latex:
\mforall{}p:iPolynomial(). ipolynomial-term(minus-poly(p)) \mequiv{} "-"ipolynomial-term(p)
Date html generated:
2020_05_20-AM-10_54_22
Last ObjectModification:
2020_01_02-PM-02_12_00
Theory : reals
Home
Index