Step
*
2
1
of Lemma
mtb-cantor-map-onto-common
1. X : Type
2. d : metric(X)
3. cmplt : mcomplete(X with d)
4. mtb : m-TB(X;d)
5. n : ℕ
6. x : X
7. y : X
8. mdist(d;x;y) ≤ (r1/r(n + 1))
9. m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;x)))
10. m-regularize(d;mtb-seq(mtb;mtb-point-cantor(mtb;x))) = mtb-seq(mtb;mtb-point-cantor(mtb;x)) ∈ (ℕ ⟶ X)
11. ∀[s:ℕ ⟶ X]. (λk.(6 * k) ∈ mcauchy(d;n.m-regularize(d;s) n))
12. mtb-cantor(mtb) ⊆r (i:ℕn ⟶ ℕ(fst(mtb)) i)
13. mtb-point-cantor(mtb;x)
= (λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi )
∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)
14. mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x
⊢ lim n1→∞.m-regularize(d;mtb-seq(mtb;λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi ))
n1 = y
BY
{ (InstLemma `m-regularize-of-regular` [⌜X⌝;⌜d⌝;⌜mtb-seq(mtb;λi.if i <z n
then mtb-point-cantor(mtb;x) i
else mtb-point-cantor(mtb;y) i
fi )⌝]⋅
THENA Auto
) }
1
.....antecedent.....
1. X : Type
2. d : metric(X)
3. cmplt : mcomplete(X with d)
4. mtb : m-TB(X;d)
5. n : ℕ
6. x : X
7. y : X
8. mdist(d;x;y) ≤ (r1/r(n + 1))
9. m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;x)))
10. m-regularize(d;mtb-seq(mtb;mtb-point-cantor(mtb;x))) = mtb-seq(mtb;mtb-point-cantor(mtb;x)) ∈ (ℕ ⟶ X)
11. ∀[s:ℕ ⟶ X]. (λk.(6 * k) ∈ mcauchy(d;n.m-regularize(d;s) n))
12. mtb-cantor(mtb) ⊆r (i:ℕn ⟶ ℕ(fst(mtb)) i)
13. mtb-point-cantor(mtb;x)
= (λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi )
∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)
14. mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x
⊢ m-k-regular(d;2;mtb-seq(mtb;λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi ))
2
1. X : Type
2. d : metric(X)
3. cmplt : mcomplete(X with d)
4. mtb : m-TB(X;d)
5. n : ℕ
6. x : X
7. y : X
8. mdist(d;x;y) ≤ (r1/r(n + 1))
9. m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;x)))
10. m-regularize(d;mtb-seq(mtb;mtb-point-cantor(mtb;x))) = mtb-seq(mtb;mtb-point-cantor(mtb;x)) ∈ (ℕ ⟶ X)
11. ∀[s:ℕ ⟶ X]. (λk.(6 * k) ∈ mcauchy(d;n.m-regularize(d;s) n))
12. mtb-cantor(mtb) ⊆r (i:ℕn ⟶ ℕ(fst(mtb)) i)
13. mtb-point-cantor(mtb;x)
= (λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi )
∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)
14. mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x
15. m-regularize(d;mtb-seq(mtb;λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi ))
= mtb-seq(mtb;λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi )
∈ (ℕ ⟶ X)
⊢ lim n1→∞.m-regularize(d;mtb-seq(mtb;λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi ))
n1 = y
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. cmplt : mcomplete(X with d)
4. mtb : m-TB(X;d)
5. n : \mBbbN{}
6. x : X
7. y : X
8. mdist(d;x;y) \mleq{} (r1/r(n + 1))
9. m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;x)))
10. m-regularize(d;mtb-seq(mtb;mtb-point-cantor(mtb;x))) = mtb-seq(mtb;mtb-point-cantor(mtb;x))
11. \mforall{}[s:\mBbbN{} {}\mrightarrow{} X]. (\mlambda{}k.(6 * k) \mmember{} mcauchy(d;n.m-regularize(d;s) n))
12. mtb-cantor(mtb) \msubseteq{}r (i:\mBbbN{}n {}\mrightarrow{} \mBbbN{}(fst(mtb)) i)
13. mtb-point-cantor(mtb;x)
= (\mlambda{}i.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi )
14. mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) \mequiv{} x
\mvdash{} lim n1\mrightarrow{}\minfty{}.m-regularize(d;mtb-seq(mtb;\mlambda{}i.if i <z n
then mtb-point-cantor(mtb;x) i
else mtb-point-cantor(mtb;y) i
fi ))
n1 = y
By
Latex:
(InstLemma `m-regularize-of-regular` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}mtb-seq(mtb;\mlambda{}i.if i <z n
then mtb-point-cantor(mtb;x) i
else mtb-point-cantor(mtb;y) i
fi )\mkleeneclose{}]\mcdot{}
THENA Auto
)
Home
Index