Nuprl Lemma : mtb-cantor_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[mtb:m-TB(X;d)].  (mtb-cantor(mtb) ∈ Type)
Proof
Definitions occuring in Statement : 
mtb-cantor: mtb-cantor(mtb)
, 
m-TB: m-TB(X;d)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mtb-cantor: mtb-cantor(mtb)
, 
m-TB: m-TB(X;d)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
pi1_wf_top, 
nat_plus_wf, 
istype-void, 
m-TB_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
productElimination, 
independent_pairEquality, 
hypothesisEquality, 
isect_memberEquality_alt, 
voidElimination, 
lambdaEquality_alt, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[mtb:m-TB(X;d)].    (mtb-cantor(mtb)  \mmember{}  Type)
Date html generated:
2019_10_30-AM-06_55_46
Last ObjectModification:
2019_10_02-PM-02_22_17
Theory : reals
Home
Index