Nuprl Lemma : mtb-cantor_wf

[X:Type]. ∀[d:metric(X)]. ∀[mtb:m-TB(X;d)].  (mtb-cantor(mtb) ∈ Type)


Proof




Definitions occuring in Statement :  mtb-cantor: mtb-cantor(mtb) m-TB: m-TB(X;d) metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mtb-cantor: mtb-cantor(mtb) m-TB: m-TB(X;d) top: Top subtype_rel: A ⊆B nat_plus: +
Lemmas referenced :  nat_wf int_seg_wf pi1_wf_top nat_plus_wf istype-void m-TB_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality setElimination rename applyEquality productElimination independent_pairEquality hypothesisEquality isect_memberEquality_alt voidElimination lambdaEquality_alt universeIsType axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[mtb:m-TB(X;d)].    (mtb-cantor(mtb)  \mmember{}  Type)



Date html generated: 2019_10_30-AM-06_55_46
Last ObjectModification: 2019_10_02-PM-02_22_17

Theory : reals


Home Index