Step * 1 1 of Lemma nearby-partition-choice

.....assertion..... 
1. Interval@i
2. icompact(I)
3. partition(I)@i
4. partition(I)@i
5. {e:ℝr0 < e} @i
6. nearby-partitions(e;p;q)
7. partition-choice(full-partition(I;p))@i
⊢ nearby-partitions(e;full-partition(I;p);full-partition(I;q))
BY
((ParallelOp -2 THEN Auto) THEN RepUR ``full-partition`` 0) }

1
1. Interval@i
2. icompact(I)
3. partition(I)@i
4. partition(I)@i
5. {e:ℝr0 < e} @i
6. ||p|| ||q|| ∈ ℤ
7. ∀i:ℕ||p||. (|p[i] q[i]| ≤ e)
8. partition-choice(full-partition(I;p))@i
⊢ (||p [right-endpoint(I)]|| 1) (||q [right-endpoint(I)]|| 1) ∈ ℤ

2
1. Interval@i
2. icompact(I)
3. partition(I)@i
4. partition(I)@i
5. {e:ℝr0 < e} @i
6. ||p|| ||q|| ∈ ℤ
7. ∀i:ℕ||p||. (|p[i] q[i]| ≤ e)
8. partition-choice(full-partition(I;p))@i
9. ||full-partition(I;p)|| ||full-partition(I;q)|| ∈ ℤ
10. : ℕ||full-partition(I;p)||@i
⊢ |[left-endpoint(I) (p [right-endpoint(I)])][i] [left-endpoint(I) (q [right-endpoint(I)])][i]| ≤ e


Latex:


Latex:
.....assertion..... 
1.  I  :  Interval@i
2.  icompact(I)
3.  p  :  partition(I)@i
4.  q  :  partition(I)@i
5.  e  :  \{e:\mBbbR{}|  r0  <  e\}  @i
6.  nearby-partitions(e;p;q)
7.  x  :  partition-choice(full-partition(I;p))@i
\mvdash{}  nearby-partitions(e;full-partition(I;p);full-partition(I;q))


By


Latex:
((ParallelOp  -2  THEN  Auto)  THEN  RepUR  ``full-partition``  0)




Home Index