Nuprl Lemma : not-rneq

[x,y:ℝ].  supposing ¬x ≠ y


Proof




Definitions occuring in Statement :  rneq: x ≠ y req: y real: uimplies: supposing a uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q rneq: x ≠ y guard: {T} or: P ∨ Q prop:
Lemmas referenced :  rleq_antisymmetry not-rless rless_wf req_witness not_wf rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination because_Cache lambdaFormation hypothesis independent_functionElimination sqequalRule inrFormation inlFormation isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x,y:\mBbbR{}].    x  =  y  supposing  \mneg{}x  \mneq{}  y



Date html generated: 2016_05_18-AM-07_13_16
Last ObjectModification: 2015_12_28-AM-00_40_45

Theory : reals


Home Index