Nuprl Lemma : not-rneq
∀[x,y:ℝ].  x = y supposing ¬x ≠ y
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
prop: ℙ
Lemmas referenced : 
rleq_antisymmetry, 
not-rless, 
rless_wf, 
req_witness, 
not_wf, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
because_Cache, 
lambdaFormation, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
inrFormation, 
inlFormation, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x,y:\mBbbR{}].    x  =  y  supposing  \mneg{}x  \mneq{}  y
Date html generated:
2016_05_18-AM-07_13_16
Last ObjectModification:
2015_12_28-AM-00_40_45
Theory : reals
Home
Index