Nuprl Lemma : partial-int-not-discrete

¬discrete-type(partial(ℤ))


Proof




Definitions occuring in Statement :  discrete-type: discrete-type(T) partial: partial(T) not: ¬A int:
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) uiff: uiff(P;Q) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 subtype_rel: A ⊆B and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: nat_plus: + real: so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a all: x:A. B[x] discrete-type: discrete-type(T) rev_uimplies: rev_uimplies(P;Q) rless: x < y sq_exists: x:A [B[x]] int-to-real: r(n) le: A ≤ B less_than': less_than'(a;b) rabs: |x| subtract: m true: True cand: c∧ B less_than: a < b squash: T sq_stable: SqStable(P) compose: g has-value: (a)↓ lt_int: i <j absval: |i| eq_int: (i =z j) nequal: a ≠ b ∈ 

Latex:
\mneg{}discrete-type(partial(\mBbbZ{}))



Date html generated: 2020_05_20-PM-00_05_50
Last ObjectModification: 2020_03_20-PM-01_32_05

Theory : reals


Home Index