Step
*
2
1
of Lemma
partition-split-cons
1. I : Interval
2. icompact(I)
3. a : ℝ
4. bs : ℝ List
5. 0 < ||[a / bs]||
⇒ ((left-endpoint(I) ≤ [a / bs][0]) ∧ (last([a / bs]) ≤ right-endpoint(I)))
6. ∀i,j:ℕ||[a / bs]||. ((i ≤ j)
⇒ ([a / bs][i] ≤ [a / bs][j]))
⊢ ∀i,j:ℕ||bs||. ((i ≤ j)
⇒ (bs[i] ≤ bs[j]))
BY
{ (Auto THEN InstHyp [⌜i + 1⌝;⌜j + 1⌝] (-4)⋅ THEN Auto THEN RWO "select-cons-tl" (-1) THEN Auto) }
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. a : \mBbbR{}
4. bs : \mBbbR{} List
5. 0 < ||[a / bs]|| {}\mRightarrow{} ((left-endpoint(I) \mleq{} [a / bs][0]) \mwedge{} (last([a / bs]) \mleq{} right-endpoint(I)))
6. \mforall{}i,j:\mBbbN{}||[a / bs]||. ((i \mleq{} j) {}\mRightarrow{} ([a / bs][i] \mleq{} [a / bs][j]))
\mvdash{} \mforall{}i,j:\mBbbN{}||bs||. ((i \mleq{} j) {}\mRightarrow{} (bs[i] \mleq{} bs[j]))
By
Latex:
(Auto THEN InstHyp [\mkleeneopen{}i + 1\mkleeneclose{};\mkleeneopen{}j + 1\mkleeneclose{}] (-4)\mcdot{} THEN Auto THEN RWO "select-cons-tl" (-1) THEN Auto)
Home
Index