Step * 1 1 1 of Lemma partition-sum_functionality

.....wf..... 
1. Interval
2. icompact(I)
3. partition(I)
4. : ℝ List
5. ||q|| ||p|| ∈ ℤ
6. ∀i:ℕ||q||. (q[i] p[i])
7. I ⟶ℝ
8. partition-choice(full-partition(I;p))
9. ||full-partition(I;q)|| ||full-partition(I;p)|| ∈ ℤ
10. ∀i:ℕ((i ≤ (||full-partition(I;p)|| 1))  (full-partition(I;q)[i] ∈ ℝ))
⊢ λi.((f (x i)) (full-partition(I;p)[i 1] full-partition(I;p)[i])) ∈ ℕ(||full-partition(I;p)|| 2) 1 ⟶ ℝ
BY
xxx(Auto THEN BLemma `partition-choice-member` THEN Auto)xxx }


Latex:


Latex:
.....wf..... 
1.  I  :  Interval
2.  icompact(I)
3.  p  :  partition(I)
4.  q  :  \mBbbR{}  List
5.  ||q||  =  ||p||
6.  \mforall{}i:\mBbbN{}||q||.  (q[i]  =  p[i])
7.  f  :  I  {}\mrightarrow{}\mBbbR{}
8.  x  :  partition-choice(full-partition(I;p))
9.  ||full-partition(I;q)||  =  ||full-partition(I;p)||
10.  \mforall{}i:\mBbbN{}.  ((i  \mleq{}  (||full-partition(I;p)||  -  1))  {}\mRightarrow{}  (full-partition(I;q)[i]  \mmember{}  \mBbbR{}))
\mvdash{}  \mlambda{}i.((f  (x  i))  *  (full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]))
    \mmember{}  \mBbbN{}(||full-partition(I;p)||  -  2)  +  1  {}\mrightarrow{}  \mBbbR{}


By


Latex:
xxx(Auto  THEN  BLemma  `partition-choice-member`  THEN  Auto)xxx




Home Index