Step
*
1
1
2
2
of Lemma
partition-sum_functionality
.....eq aux.....
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. q : ℝ List
5. ||q|| = ||p|| ∈ ℤ
6. ∀i:ℕ||q||. (q[i] = p[i])
7. f : I ⟶ℝ
8. x : partition-choice(full-partition(I;p))
9. ||full-partition(I;q)|| = ||full-partition(I;p)|| ∈ ℤ
10. ∀i:ℕ. ((i ≤ (||full-partition(I;p)|| - 1))
⇒ (full-partition(I;q)[i] ∈ ℝ))
⊢ ℕ(||full-partition(I;p)|| - 2) + 1 ∈ Type
BY
{ xxxAutoxxx }
Latex:
Latex:
.....eq aux.....
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. q : \mBbbR{} List
5. ||q|| = ||p||
6. \mforall{}i:\mBbbN{}||q||. (q[i] = p[i])
7. f : I {}\mrightarrow{}\mBbbR{}
8. x : partition-choice(full-partition(I;p))
9. ||full-partition(I;q)|| = ||full-partition(I;p)||
10. \mforall{}i:\mBbbN{}. ((i \mleq{} (||full-partition(I;p)|| - 1)) {}\mRightarrow{} (full-partition(I;q)[i] \mmember{} \mBbbR{}))
\mvdash{} \mBbbN{}(||full-partition(I;p)|| - 2) + 1 \mmember{} Type
By
Latex:
xxxAutoxxx
Home
Index