Step
*
2
1
1
of Lemma
poly-approx-aux-property
1. k : ℤ
2. 0 < k
3. a : ℕ ⟶ ℝ
4. x : ℝ
5. xM : ℤ
6. M : ℕ+
7. ∀[n:ℕ]
((|x| ≤ (r1/r(4)))
⇒ 1-approx(x;M;xM)
⇒ (k - 1) + 1-approx(Σ{(a (n + i)) * x^i | 0≤i≤k - 1};M;poly-approx-aux(a;x;xM;M;n;k - 1)))
8. n : ℕ
9. |x| ≤ (r1/r(4))
10. 1-approx(x;M;xM)
11. k-approx(Σ{(a ((n + 1) + i)) * x^i | 0≤i≤k - 1};M;poly-approx-aux(a;x;xM;M;n + 1;k - 1))
⊢ k + 1-approx(((a n) * r1) + Σ{(a (n + i + 1)) * x^i + 1 | 0≤i≤k - 1};M;poly-approx-aux(a;x;xM;M;n;k))
BY
{ (Assert (((a n) * r1) + Σ{(a (n + i + 1)) * x^i + 1 | 0≤i≤k - 1})
= ((a n) + (x * Σ{(a ((n + 1) + i)) * x^i | 0≤i≤k - 1})) BY
(BLemma `radd_functionality` THEN Auto)) }
1
.....aux.....
1. k : ℤ
2. 0 < k
3. a : ℕ ⟶ ℝ
4. x : ℝ
5. xM : ℤ
6. M : ℕ+
7. ∀[n:ℕ]
((|x| ≤ (r1/r(4)))
⇒ 1-approx(x;M;xM)
⇒ (k - 1) + 1-approx(Σ{(a (n + i)) * x^i | 0≤i≤k - 1};M;poly-approx-aux(a;x;xM;M;n;k - 1)))
8. n : ℕ
9. |x| ≤ (r1/r(4))
10. 1-approx(x;M;xM)
11. k-approx(Σ{(a ((n + 1) + i)) * x^i | 0≤i≤k - 1};M;poly-approx-aux(a;x;xM;M;n + 1;k - 1))
⊢ Σ{(a (n + i + 1)) * x^i + 1 | 0≤i≤k - 1} = (x * Σ{(a ((n + 1) + i)) * x^i | 0≤i≤k - 1})
2
1. k : ℤ
2. 0 < k
3. a : ℕ ⟶ ℝ
4. x : ℝ
5. xM : ℤ
6. M : ℕ+
7. ∀[n:ℕ]
((|x| ≤ (r1/r(4)))
⇒ 1-approx(x;M;xM)
⇒ (k - 1) + 1-approx(Σ{(a (n + i)) * x^i | 0≤i≤k - 1};M;poly-approx-aux(a;x;xM;M;n;k - 1)))
8. n : ℕ
9. |x| ≤ (r1/r(4))
10. 1-approx(x;M;xM)
11. k-approx(Σ{(a ((n + 1) + i)) * x^i | 0≤i≤k - 1};M;poly-approx-aux(a;x;xM;M;n + 1;k - 1))
12. (((a n) * r1) + Σ{(a (n + i + 1)) * x^i + 1 | 0≤i≤k - 1}) = ((a n) + (x * Σ{(a ((n + 1) + i)) * x^i | 0≤i≤k - 1}))
⊢ k + 1-approx(((a n) * r1) + Σ{(a (n + i + 1)) * x^i + 1 | 0≤i≤k - 1};M;poly-approx-aux(a;x;xM;M;n;k))
Latex:
Latex:
1. k : \mBbbZ{}
2. 0 < k
3. a : \mBbbN{} {}\mrightarrow{} \mBbbR{}
4. x : \mBbbR{}
5. xM : \mBbbZ{}
6. M : \mBbbN{}\msupplus{}
7. \mforall{}[n:\mBbbN{}]
((|x| \mleq{} (r1/r(4)))
{}\mRightarrow{} 1-approx(x;M;xM)
{}\mRightarrow{} (k - 1) + 1-approx(\mSigma{}\{(a (n + i)) * x\^{}i | 0\mleq{}i\mleq{}k - 1\};M;poly-approx-aux(a;x;xM;M;n;k - 1)))
8. n : \mBbbN{}
9. |x| \mleq{} (r1/r(4))
10. 1-approx(x;M;xM)
11. k-approx(\mSigma{}\{(a ((n + 1) + i)) * x\^{}i | 0\mleq{}i\mleq{}k - 1\};M;poly-approx-aux(a;x;xM;M;n + 1;k - 1))
\mvdash{} k + 1-approx(((a n) * r1)
+ \mSigma{}\{(a (n + i + 1)) * x\^{}i + 1 | 0\mleq{}i\mleq{}k - 1\};M;poly-approx-aux(a;x;xM;M;n;k))
By
Latex:
(Assert (((a n) * r1) + \mSigma{}\{(a (n + i + 1)) * x\^{}i + 1 | 0\mleq{}i\mleq{}k - 1\})
= ((a n) + (x * \mSigma{}\{(a ((n + 1) + i)) * x\^{}i | 0\mleq{}i\mleq{}k - 1\})) BY
(BLemma `radd\_functionality` THEN Auto))
Home
Index