Step
*
2
1
1
of Lemma
poly-approx-aux_wf
1. k : ℤ
2. 0 < k
3. a : ℕ ⟶ ℝ
4. x : ℝ
5. xM : ℤ
6. M : ℕ+
7. n : ℕ
8. poly-approx-aux(a;x;xM;M;n + 1;k - 1) ∈ ℤ
9. u : ℤ
10. poly-approx-aux(a;x;xM;M;n + 1;k - 1) = u ∈ ℤ
⊢ if (k =z 0)
then a n M
else eval b = ((2 * |u|) ÷ M) + 1 in
eval z = if (b =z 1) then xM else x (b * M) fi in
eval v = (u * z) ÷ 2 * b * M in
eval t = a n M in
v + t
fi ∈ ℤ
BY
{ ((GenConcl ⌜(((2 * |u|) ÷ M) + 1) = b ∈ ℕ+⌝⋅ THENA Auto) THEN (CallByValueReduce 0 THENA Auto)) }
1
1. k : ℤ
2. 0 < k
3. a : ℕ ⟶ ℝ
4. x : ℝ
5. xM : ℤ
6. M : ℕ+
7. n : ℕ
8. poly-approx-aux(a;x;xM;M;n + 1;k - 1) ∈ ℤ
9. u : ℤ
10. poly-approx-aux(a;x;xM;M;n + 1;k - 1) = u ∈ ℤ
11. b : ℕ+
12. (((2 * |u|) ÷ M) + 1) = b ∈ ℕ+
⊢ if (k =z 0)
then a n M
else eval z = if (b =z 1) then xM else x (b * M) fi in
eval v = (u * z) ÷ 2 * b * M in
eval t = a n M in
v + t
fi ∈ ℤ
Latex:
Latex:
1. k : \mBbbZ{}
2. 0 < k
3. a : \mBbbN{} {}\mrightarrow{} \mBbbR{}
4. x : \mBbbR{}
5. xM : \mBbbZ{}
6. M : \mBbbN{}\msupplus{}
7. n : \mBbbN{}
8. poly-approx-aux(a;x;xM;M;n + 1;k - 1) \mmember{} \mBbbZ{}
9. u : \mBbbZ{}
10. poly-approx-aux(a;x;xM;M;n + 1;k - 1) = u
\mvdash{} if (k =\msubz{} 0)
then a n M
else eval b = ((2 * |u|) \mdiv{} M) + 1 in
eval z = if (b =\msubz{} 1) then xM else x (b * M) fi in
eval v = (u * z) \mdiv{} 2 * b * M in
eval t = a n M in
v + t
fi \mmember{} \mBbbZ{}
By
Latex:
((GenConcl \mkleeneopen{}(((2 * |u|) \mdiv{} M) + 1) = b\mkleeneclose{}\mcdot{} THENA Auto) THEN (CallByValueReduce 0 THENA Auto))
Home
Index