Step
*
1
1
1
1
1
2
of Lemma
poly-approx-property
1. B : ℕ+
2. N : ℕ+
3. k : ℕ
4. a : ℕ ⟶ ℝ
5. x : ℝ
6. ∀[xM:ℤ]. ∀[M:ℕ+]. ∀[n:ℕ].
((|x| ≤ (r1/r(4)))
⇒ 1-approx(x;M;xM)
⇒ k + 1-approx(Σ{(a (n + i)) * x^i | 0≤i≤k};M;poly-approx-aux(a;x;xM;M;n;k)))
7. |x| ≤ (r1/r(4))
8. (2 * (k + 1)) = B ∈ ℕ+
9. M : ℕ+
10. (B * N) = M ∈ ℕ+
11. xM : ℤ
12. (x (B * N)) = xM ∈ ℤ
13. 1-approx(x;B * N;xM)
14. Σ{(a (0 + i)) * x^i | 0≤i≤k} = Σ{(a i) * x^i | 0≤i≤k}
15. z : ℤ
16. poly-approx-aux(a;x;xM;B * N;0;k) = z ∈ ℤ
17. v : ℝ
18. Σ{(a i) * x^i | 0≤i≤k} = v ∈ ℝ
19. |v - (r(z)/r(2 * B * N))| ≤ (r1/r(2 * N))
20. |(r(z)/r(2 * B * N)) - (r(z ÷ B)/r(2 * N))| ≤ (r1/r(2 * N))
⊢ ((r1/r(2 * N)) + |(r(z)/r(2 * B * N)) - (r(z ÷ B)/r(2 * N))|) ≤ (r1/r(N))
BY
{ (RWO "-1" 0 THEN Auto THEN (RWO "radd-rdiv" 0 THENA Auto) THEN RWO "radd-int" 0 THEN Auto) }
Latex:
Latex:
1. B : \mBbbN{}\msupplus{}
2. N : \mBbbN{}\msupplus{}
3. k : \mBbbN{}
4. a : \mBbbN{} {}\mrightarrow{} \mBbbR{}
5. x : \mBbbR{}
6. \mforall{}[xM:\mBbbZ{}]. \mforall{}[M:\mBbbN{}\msupplus{}]. \mforall{}[n:\mBbbN{}].
((|x| \mleq{} (r1/r(4)))
{}\mRightarrow{} 1-approx(x;M;xM)
{}\mRightarrow{} k + 1-approx(\mSigma{}\{(a (n + i)) * x\^{}i | 0\mleq{}i\mleq{}k\};M;poly-approx-aux(a;x;xM;M;n;k)))
7. |x| \mleq{} (r1/r(4))
8. (2 * (k + 1)) = B
9. M : \mBbbN{}\msupplus{}
10. (B * N) = M
11. xM : \mBbbZ{}
12. (x (B * N)) = xM
13. 1-approx(x;B * N;xM)
14. \mSigma{}\{(a (0 + i)) * x\^{}i | 0\mleq{}i\mleq{}k\} = \mSigma{}\{(a i) * x\^{}i | 0\mleq{}i\mleq{}k\}
15. z : \mBbbZ{}
16. poly-approx-aux(a;x;xM;B * N;0;k) = z
17. v : \mBbbR{}
18. \mSigma{}\{(a i) * x\^{}i | 0\mleq{}i\mleq{}k\} = v
19. |v - (r(z)/r(2 * B * N))| \mleq{} (r1/r(2 * N))
20. |(r(z)/r(2 * B * N)) - (r(z \mdiv{} B)/r(2 * N))| \mleq{} (r1/r(2 * N))
\mvdash{} ((r1/r(2 * N)) + |(r(z)/r(2 * B * N)) - (r(z \mdiv{} B)/r(2 * N))|) \mleq{} (r1/r(N))
By
Latex:
(RWO "-1" 0 THEN Auto THEN (RWO "radd-rdiv" 0 THENA Auto) THEN RWO "radd-int" 0 THEN Auto)
Home
Index