Nuprl Lemma : power-series-converges-everywhere-to

a:ℕ ⟶ ℝ. ∀b:ℝ. ∀g:ℝ ⟶ ℝ.
  ((∀x:ℝ. Σi.a[i] b^i g[x])
   (∀r:{r:ℝr0 < r} . ∃N:ℕ. ∀n:{N...}. (|a[n 1]| ≤ (|a[n]|/r)))
   lim n→∞{a[i] b^i 0≤i≤n} = λx.g[x] for x ∈ (-∞, ∞))


Proof




Definitions occuring in Statement :  fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I riiint: (-∞, ∞) series-sum: Σn.x[n] a rsum: Σ{x[k] n≤k≤m} rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rnexp: x^k1 rsub: y rmul: b int-to-real: r(n) real: int_upper: {i...} nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I i-approx: i-approx(I;n) riiint: (-∞, ∞) uall: [x:A]. B[x] prop: exists: x:A. B[x] nat: so_apply: x[s] int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False and: P ∧ Q subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T rneq: x ≠ y guard: {T} so_lambda: λ2x.t[x] nat_plus: + iff: ⇐⇒ Q rev_implies:  Q true: True uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 subinterval: I ⊆  cand: c∧ B rge: x ≥ y rless: x < y sq_exists: x:A [B[x]] rfun: I ⟶ℝ i-member: r ∈ I rooint: (l, u) icompact: icompact(I) i-nonvoid: i-nonvoid(I) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}b:\mBbbR{}.  \mforall{}g:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}x:\mBbbR{}.  \mSigma{}i.a[i]  *  x  -  b\^{}i  =  g[x])
    {}\mRightarrow{}  (\mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .  \mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  (|a[n  +  1]|  \mleq{}  (|a[n]|/r)))
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.\mSigma{}\{a[i]  *  x  -  b\^{}i  |  0\mleq{}i\mleq{}n\}  =  \mlambda{}x.g[x]  for  x  \mmember{}  (-\minfty{},  \minfty{}))



Date html generated: 2020_05_20-PM-01_07_43
Last ObjectModification: 2020_01_06-PM-00_29_22

Theory : reals


Home Index