Nuprl Lemma : power-series-converges

a:ℕ ⟶ ℝ. ∀b:ℝ. ∀r:{r:ℝr0 < r} . ∀N:ℕ.
  ((∀n:{N...}. (|a[n 1]| ≤ (|a[n]|/r)))  Σn.a[n] b^n↓ absolutely for x ∈ (b r, r))


Proof




Definitions occuring in Statement :  fun-series-converges-absolutely: Σn.f[n; x]↓ absolutely for x ∈ I rooint: (l, u) rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rnexp: x^k1 rsub: y rmul: b radd: b int-to-real: r(n) real: int_upper: {i...} nat: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ so_apply: x[s] prop: so_apply: x[s1;s2] i-approx: i-approx(I;n) rooint: (l, u) nat: int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T rneq: x ≠ y guard: {T} so_lambda: λ2x.t[x] nat_plus: + iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B uiff: uiff(P;Q) rless: x < y sq_exists: x:A [B[x]] req_int_terms: t1 ≡ t2 less_than: a < b less_than': less_than'(a;b) true: True rev_uimplies: rev_uimplies(P;Q) i-member: r ∈ I rccint: [l, u] rdiv: (x/y) rge: x ≥ y subtract: m

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}b:\mBbbR{}.  \mforall{}r:\{r:\mBbbR{}|  r0  <  r\}  .  \mforall{}N:\mBbbN{}.
    ((\mforall{}n:\{N...\}.  (|a[n  +  1]|  \mleq{}  (|a[n]|/r)))  {}\mRightarrow{}  \mSigma{}n.a[n]  *  x  -  b\^{}n\mdownarrow{}  absolutely  for  x  \mmember{}  (b  -  r,  b  +  r))



Date html generated: 2020_05_20-PM-01_07_10
Last ObjectModification: 2019_12_14-PM-02_55_55

Theory : reals


Home Index