Step
*
of Lemma
proper-continuous-implies
∀[I:Interval]. ∀[f:I ⟶ℝ].
(f[x] (proper)continuous for x ∈ I
⇒ (∀m:ℕ+. (icompact(i-approx(I;m))
⇒ iproper(i-approx(I;m))
⇒ f[x] continuous for x ∈ i-approx(I;m))))
BY
{ (Auto THEN (D 3 With ⌜m⌝ THENA Auto) THEN (D 0 THENA Auto) THEN (RWO "i-approx-approx" 0 THENA Auto) THEN Trivial) }
Latex:
Latex:
\mforall{}[I:Interval]. \mforall{}[f:I {}\mrightarrow{}\mBbbR{}].
(f[x] (proper)continuous for x \mmember{} I
{}\mRightarrow{} (\mforall{}m:\mBbbN{}\msupplus{}
(icompact(i-approx(I;m))
{}\mRightarrow{} iproper(i-approx(I;m))
{}\mRightarrow{} f[x] continuous for x \mmember{} i-approx(I;m))))
By
Latex:
(Auto
THEN (D 3 With \mkleeneopen{}m\mkleeneclose{} THENA Auto)
THEN (D 0 THENA Auto)
THEN (RWO "i-approx-approx" 0 THENA Auto)
THEN Trivial)
Home
Index