Nuprl Lemma : proper-continuous-maps-compact
∀I:Interval. ∀f:I ⟶ℝ.  (f[x] (proper)continuous for x ∈ I ⇒ maps-compact-proper(I;(-∞, ∞);x.f[x]))
Proof
Definitions occuring in Statement : 
maps-compact-proper: maps-compact-proper(I;J;x.f[x]), 
proper-continuous: f[x] (proper)continuous for x ∈ I, 
rfun: I ⟶ℝ, 
riiint: (-∞, ∞), 
interval: Interval, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
so_apply: x[s], 
rfun: I ⟶ℝ, 
label: ...$L... t, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
squash: ↓T, 
sq_stable: SqStable(P), 
prop: ℙ, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
member: t ∈ T, 
maps-compact-proper: maps-compact-proper(I;J;x.f[x]), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
true: True, 
cand: A c∧ B, 
guard: {T}, 
subinterval: I ⊆ J , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
riiint: (-∞, ∞), 
i-approx: i-approx(I;n), 
btrue: tt, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
isl: isl(x), 
rccint: [l, u], 
i-finite: i-finite(I), 
iproper: iproper(I), 
lower-bound: lower-bound(A;b), 
inf: inf(A) = b, 
rset-member: x ∈ A, 
rrange: f[x](x∈I), 
sup: sup(A) = b, 
upper-bound: A ≤ b
Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (f[x]  (proper)continuous  for  x  \mmember{}  I  {}\mRightarrow{}  maps-compact-proper(I;(-\minfty{},  \minfty{});x.f[x]))
Date html generated:
2020_05_20-PM-00_26_53
Last ObjectModification:
2019_12_28-AM-11_09_14
Theory : reals
Home
Index