Nuprl Lemma : proper-maps-compact
∀I,J:Interval. ∀f:I ⟶ℝ.  (iproper(J) ⇒ maps-compact(I;J;x.f[x]) ⇒ maps-compact-proper(I;J;x.f[x]))
Proof
Definitions occuring in Statement : 
maps-compact-proper: maps-compact-proper(I;J;x.f[x]), 
maps-compact: maps-compact(I;J;x.f[x]), 
rfun: I ⟶ℝ, 
iproper: iproper(I), 
interval: Interval, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
maps-compact: maps-compact(I;J;x.f[x]), 
maps-compact-proper: maps-compact-proper(I;J;x.f[x]), 
member: t ∈ T, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
so_apply: x[s], 
rfun: I ⟶ℝ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
sq_stable: SqStable(P), 
squash: ↓T, 
guard: {T}
Latex:
\mforall{}I,J:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (iproper(J)  {}\mRightarrow{}  maps-compact(I;J;x.f[x])  {}\mRightarrow{}  maps-compact-proper(I;J;x.f[x]))
Date html generated:
2020_05_20-PM-00_26_28
Last ObjectModification:
2020_01_08-AM-10_39_24
Theory : reals
Home
Index