Step
*
1
1
1
of Lemma
pseudo-positive-is-positive-proof2
1. ∀a:ℕ*. ((∀c:ℕ*. ((¬¬(∃n:ℕ. (¬((a n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ))))))
⇒ (∃n:ℕ. 0 < a n))
2. x : ℝ
3. pseudo-positive(x)
4. d : ∀n:ℕ. ((|x| < (r1)/2^n) ∨ ((r1)/2^(n + 1) < |x|))
⊢ r0 < x
BY
{ (InstHyp [⌜nat-star-retract(λn.if isl(d n) then 0 else 1 fi )⌝] 1⋅ THENA Auto) }
1
1. ∀a:ℕ*. ((∀c:ℕ*. ((¬¬(∃n:ℕ. (¬((a n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ))))))
⇒ (∃n:ℕ. 0 < a n))
2. x : ℝ
3. pseudo-positive(x)
4. d : ∀n:ℕ. ((|x| < (r1)/2^n) ∨ ((r1)/2^(n + 1) < |x|))
5. c : ℕ*
⊢ (¬¬(∃n:ℕ. (¬((nat-star-retract(λn.if isl(d n) then 0 else 1 fi ) n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ))))
2
1. ∀a:ℕ*. ((∀c:ℕ*. ((¬¬(∃n:ℕ. (¬((a n) = (c n) ∈ ℤ)))) ∨ (¬¬(∃n:ℕ. (¬(0 = (c n) ∈ ℤ))))))
⇒ (∃n:ℕ. 0 < a n))
2. x : ℝ
3. pseudo-positive(x)
4. d : ∀n:ℕ. ((|x| < (r1)/2^n) ∨ ((r1)/2^(n + 1) < |x|))
5. ∃n:ℕ. 0 < nat-star-retract(λn.if isl(d n) then 0 else 1 fi ) n
⊢ r0 < x
Latex:
Latex:
1. \mforall{}a:\mBbbN{}*
((\mforall{}c:\mBbbN{}*. ((\mneg{}\mneg{}(\mexists{}n:\mBbbN{}. (\mneg{}((a n) = (c n))))) \mvee{} (\mneg{}\mneg{}(\mexists{}n:\mBbbN{}. (\mneg{}(0 = (c n))))))) {}\mRightarrow{} (\mexists{}n:\mBbbN{}. 0 < a n))
2. x : \mBbbR{}
3. pseudo-positive(x)
4. d : \mforall{}n:\mBbbN{}. ((|x| < (r1)/2\^{}n) \mvee{} ((r1)/2\^{}(n + 1) < |x|))
\mvdash{} r0 < x
By
Latex:
(InstHyp [\mkleeneopen{}nat-star-retract(\mlambda{}n.if isl(d n) then 0 else 1 fi )\mkleeneclose{}] 1\mcdot{} THENA Auto)
Home
Index