Nuprl Lemma : quadratic-1-2-equal-implies2

[a,b,c:ℝ].
  ({((b b) (r(4) c)) ∧ (quadratic1(a;b;c) (-(b)/r(2) a))}) supposing 
     ((quadratic1(a;b;c) quadratic2(a;b;c)) and 
     (r0 ≤ ((b b) r(4) c)) and 
     a ≠ r0)


Proof




Definitions occuring in Statement :  quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) rdiv: (x/y) rneq: x ≠ y rleq: x ≤ y rsub: y req: y rmul: b rminus: -(x) int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] guard: {T} and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B rneq: x ≠ y or: P ∨ Q all: x:A. B[x] implies:  Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: so_lambda: λ2x.t[x] so_apply: x[s] false: False not: ¬A rat_term_to_real: rat_term_to_real(f;t) rtermVar: rtermVar(var) rat_term_ind: rat_term_ind pi1: fst(t) rtermDivide: num "/" denom rtermMultiply: left "*" right rtermConstant: "const" pi2: snd(t) stable: Stable{P} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] req_int_terms: t1 ≡ t2

Latex:
\mforall{}[a,b,c:\mBbbR{}].
    (\{((b  *  b)  =  (r(4)  *  a  *  c))  \mwedge{}  (quadratic1(a;b;c)  =  (-(b)/r(2)  *  a))\})  supposing 
          ((quadratic1(a;b;c)  =  quadratic2(a;b;c))  and 
          (r0  \mleq{}  ((b  *  b)  -  r(4)  *  a  *  c))  and 
          a  \mneq{}  r0)



Date html generated: 2020_05_20-PM-00_34_58
Last ObjectModification: 2020_01_06-PM-00_25_26

Theory : reals


Home Index