Step
*
1
of Lemma
quadratic-formula1
1. a : ℝ
2. b : ℝ
3. c : ℝ
4. a ≠ r0
5. r0 ≤ ((b * b) - r(4) * a * c)
6. r(2) * a ≠ r0
7. v : {r:ℝ| (r0 ≤ r) ∧ ((r * r) = ((b * b) - r(4) * a * c))}
8. rsqrt((b * b) - r(4) * a * c) = v ∈ {r:ℝ| (r0 ≤ r) ∧ ((r * r) = ((b * b) - r(4) * a * c))}
9. r0 ≤ v
10. (v * v) = ((b * b) - r(4) * a * c)
11. x : ℝ
12. (x = (-(b) + v/r(2) * a)) ∨ (x = (-(b) - v/r(2) * a))
⊢ ((a * x^2) + (b * x) + c) = r0
BY
{ ((Assert r(4) * a ≠ r0 BY (RepeatFor 2 (ParallelOp 4) THEN nRMul ⌜r(4)⌝ 4⋅ THEN Auto)) THEN nRMul ⌜r(4) * a⌝ 0⋅) }
1
1. a : ℝ
2. b : ℝ
3. c : ℝ
4. a ≠ r0
5. r0 ≤ ((b * b) - r(4) * a * c)
6. r(2) * a ≠ r0
7. v : {r:ℝ| (r0 ≤ r) ∧ ((r * r) = ((b * b) - r(4) * a * c))}
8. rsqrt((b * b) - r(4) * a * c) = v ∈ {r:ℝ| (r0 ≤ r) ∧ ((r * r) = ((b * b) - r(4) * a * c))}
9. r0 ≤ v
10. (v * v) = ((b * b) - r(4) * a * c)
11. x : ℝ
12. (x = (-(b) + v/r(2) * a)) ∨ (x = (-(b) - v/r(2) * a))
13. r(4) * a ≠ r0
⊢ ((r(4) * x^2 * a * a) + (r(4) * a * b * x) + (r(4) * a * c)) = r0
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. c : \mBbbR{}
4. a \mneq{} r0
5. r0 \mleq{} ((b * b) - r(4) * a * c)
6. r(2) * a \mneq{} r0
7. v : \{r:\mBbbR{}| (r0 \mleq{} r) \mwedge{} ((r * r) = ((b * b) - r(4) * a * c))\}
8. rsqrt((b * b) - r(4) * a * c) = v
9. r0 \mleq{} v
10. (v * v) = ((b * b) - r(4) * a * c)
11. x : \mBbbR{}
12. (x = (-(b) + v/r(2) * a)) \mvee{} (x = (-(b) - v/r(2) * a))
\mvdash{} ((a * x\^{}2) + (b * x) + c) = r0
By
Latex:
((Assert r(4) * a \mneq{} r0 BY
(RepeatFor 2 (ParallelOp 4) THEN nRMul \mkleeneopen{}r(4)\mkleeneclose{} 4\mcdot{} THEN Auto))
THEN nRMul \mkleeneopen{}r(4) * a\mkleeneclose{} 0\mcdot{}
)
Home
Index