Step
*
1
1
1
of Lemma
quadratic-formula2
1. a : ℝ
2. b : ℝ
3. c : ℝ
4. a ≠ r0
5. r0 ≤ ((b * b) - r(4) * a * c)
6. r(2) * a ≠ r0
7. v : {r:ℝ| (r0 ≤ r) ∧ ((r * r) = ((b * b) - r(4) * a * c))}
8. rsqrt((b * b) - r(4) * a * c) = v ∈ {r:ℝ| (r0 ≤ r) ∧ ((r * r) = ((b * b) - r(4) * a * c))}
9. r0 ≤ v
10. (v * v) = ((b * b) - r(4) * a * c)
11. x : ℝ
12. ((a * x * x) + (b * x) + c) = r0
⊢ ((b * b) + (r(4) * a * b * x) + (r(4) * a * a * x * x)) = ((r(-4) * a * c) + (b * b))
BY
{ (nRAdd ⌜-((b * x) + c)⌝ (-1)⋅ THEN nRAdd ⌜-(b * b)⌝ 0⋅ THEN RWO "-1" 0 THEN Auto) }
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. c : \mBbbR{}
4. a \mneq{} r0
5. r0 \mleq{} ((b * b) - r(4) * a * c)
6. r(2) * a \mneq{} r0
7. v : \{r:\mBbbR{}| (r0 \mleq{} r) \mwedge{} ((r * r) = ((b * b) - r(4) * a * c))\}
8. rsqrt((b * b) - r(4) * a * c) = v
9. r0 \mleq{} v
10. (v * v) = ((b * b) - r(4) * a * c)
11. x : \mBbbR{}
12. ((a * x * x) + (b * x) + c) = r0
\mvdash{} ((b * b) + (r(4) * a * b * x) + (r(4) * a * a * x * x)) = ((r(-4) * a * c) + (b * b))
By
Latex:
(nRAdd \mkleeneopen{}-((b * x) + c)\mkleeneclose{} (-1)\mcdot{} THEN nRAdd \mkleeneopen{}-(b * b)\mkleeneclose{} 0\mcdot{} THEN RWO "-1" 0 THEN Auto)
Home
Index