Nuprl Lemma : r3-dp-prim_wf
r3-dp-prim() ∈ DualPlanePrimitives
Proof
Definitions occuring in Statement :
r3-dp-prim: r3-dp-prim()
,
member: t ∈ T
,
dual-plane-primitives: DualPlanePrimitives
Definitions unfolded in proof :
r3-dp-prim: r3-dp-prim()
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
real-vec: ℝ^n
,
all: ∀x:A. B[x]
Lemmas referenced :
mk-dp-prim_wf,
real-vec_wf,
false_wf,
le_wf,
real-vec-sep_wf,
int-to-real_wf,
int_seg_wf,
rcp_wf,
req_wf,
dot-product_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setEquality,
dependent_set_memberEquality,
natural_numberEquality,
independent_pairFormation,
lambdaFormation,
hypothesis,
hypothesisEquality,
lambdaEquality,
setElimination,
rename,
dependent_functionElimination,
because_Cache
Latex:
r3-dp-prim() \mmember{} DualPlanePrimitives
Date html generated:
2018_05_22-PM-02_44_00
Last ObjectModification:
2018_05_09-PM-01_46_43
Theory : reals
Home
Index